Skip to main content
Top
Published in: Drugs 11/2013

01-07-2013 | Review Article

Adverse Effects of Immunosuppressant Drugs upon Airway Epithelial Cell and Mucociliary Clearance: Implications for Lung Transplant Recipients

Authors: Rogerio Pazetti, Paulo Manuel Pêgo-Fernandes, Fabio Biscegli Jatene

Published in: Drugs | Issue 11/2013

Login to get access

Abstract

Optimal post-transplantation immunosuppression is critical to the survival of the graft and the patient after lung transplantation. Immunosuppressant agents target various aspects of the immune system to maximize graft tolerance while minimizing medication toxicities and side effects. The vast majority of patients receive maintenance immunosuppressive therapy consisting of a triple-drug regimen including a calcineurin inhibitor, a cell cycle inhibitor and a corticosteroid. Although these immunosuppressant drugs are frequently used after transplantation and to control inflammatory processes, limited data are available with regard to their effects on cells other than those from the immunological system. Notably, the airway epithelial cell is of interest because it may contribute to development of bronchiolitis obliterans through production of pro-inflammatory cytokines. This review focuses the current armamentarium of immunosuppressant drugs used after lung transplantation and their main side effects upon airway epithelial cells and mucociliary clearance.
Literature
1.
go back to reference Christie JD, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report—2012. J Heart Lung Transpl. 2012;31(10):1073–86.CrossRef Christie JD, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report—2012. J Heart Lung Transpl. 2012;31(10):1073–86.CrossRef
2.
go back to reference Taylor JL, Palmer SM. Critical care perspective on immunotherapy in lung transplantation. J Intensive Care Med. 2006;21:327.PubMedCrossRef Taylor JL, Palmer SM. Critical care perspective on immunotherapy in lung transplantation. J Intensive Care Med. 2006;21:327.PubMedCrossRef
3.
go back to reference Speich R, van der Bij W. Epidemiology and management of infections after lung transplantation. Clin Infect Dis. 2001;33(Suppl. 1):S58–65.PubMedCrossRef Speich R, van der Bij W. Epidemiology and management of infections after lung transplantation. Clin Infect Dis. 2001;33(Suppl. 1):S58–65.PubMedCrossRef
4.
go back to reference Aguilar-Guisado M, Givald J, Ussetti P, et al. Pneumonia after lung transplantation in the Resitra cohort: a multicenter prospective study. Am J Transpl. 2007;7:1989–96.CrossRef Aguilar-Guisado M, Givald J, Ussetti P, et al. Pneumonia after lung transplantation in the Resitra cohort: a multicenter prospective study. Am J Transpl. 2007;7:1989–96.CrossRef
5.
go back to reference Randell SH, Boucher RC. Effective mucus clearance is essential for respiratory health. Am J Resp Cell Mol Biol. 2006;35:20–8.CrossRef Randell SH, Boucher RC. Effective mucus clearance is essential for respiratory health. Am J Resp Cell Mol Biol. 2006;35:20–8.CrossRef
6.
go back to reference Qu N, Vos P, Schelfhorst M, et al. Integrity of airway epithelium is essential against obliterative airway disease in transplanted rat tracheas. J Heart Lung Transpl. 2005;24:882–90.CrossRef Qu N, Vos P, Schelfhorst M, et al. Integrity of airway epithelium is essential against obliterative airway disease in transplanted rat tracheas. J Heart Lung Transpl. 2005;24:882–90.CrossRef
7.
go back to reference Nakajima T, Palchevsky V, Perkins DL, Belperio JA, Finn PW. Lung transplantation: infection, inflammation, and the microbiome. Semin Immunopathol. 2011;33:135–56.PubMedCrossRef Nakajima T, Palchevsky V, Perkins DL, Belperio JA, Finn PW. Lung transplantation: infection, inflammation, and the microbiome. Semin Immunopathol. 2011;33:135–56.PubMedCrossRef
8.
go back to reference Borthwick LA, Parker SM, Brougham KA, et al. Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax. 2009;64:770–7.PubMedCrossRef Borthwick LA, Parker SM, Brougham KA, et al. Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax. 2009;64:770–7.PubMedCrossRef
9.
go back to reference Felton VM, Inge LJ, Willis BC, et al. Immunosuppression-induced bronchial epithelial–mesenchymal transition: a potential contributor to obliterative bronchiolitis. J Thorac Cardiovasc Surg. 2011;141:523–30.PubMedCrossRef Felton VM, Inge LJ, Willis BC, et al. Immunosuppression-induced bronchial epithelial–mesenchymal transition: a potential contributor to obliterative bronchiolitis. J Thorac Cardiovasc Surg. 2011;141:523–30.PubMedCrossRef
10.
go back to reference Neuringer IP, Sloan J, Budd S, et al. Calcineurin inhibitor effects on growth and phenotype of human airway epithelial cells in vitro. Am J Transpl. 2005;5:2660–70.CrossRef Neuringer IP, Sloan J, Budd S, et al. Calcineurin inhibitor effects on growth and phenotype of human airway epithelial cells in vitro. Am J Transpl. 2005;5:2660–70.CrossRef
11.
go back to reference Azzola A, Havryk A, Chhajed P, et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. Transplantation. 2004;77:275–80.PubMedCrossRef Azzola A, Havryk A, Chhajed P, et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. Transplantation. 2004;77:275–80.PubMedCrossRef
12.
go back to reference Pazetti R, Pêgo-Fernandes PM, Ranzani OT, et al. Cyclosporin A reduces airway mucus secretion and mucociliary clearance in rats. Clinics (São Paulo). 2007;62(3):345–52.CrossRef Pazetti R, Pêgo-Fernandes PM, Ranzani OT, et al. Cyclosporin A reduces airway mucus secretion and mucociliary clearance in rats. Clinics (São Paulo). 2007;62(3):345–52.CrossRef
13.
go back to reference Pazetti R, Pêgo-Fernandes PM, Lorenzi-Filho G, et al. Effects of cyclosporine A and bronchial transection on mucociliary transport in rats. Ann Thorac Surg. 2008;85(6):1925–9 (discussion 1929). Pazetti R, Pêgo-Fernandes PM, Lorenzi-Filho G, et al. Effects of cyclosporine A and bronchial transection on mucociliary transport in rats. Ann Thorac Surg. 2008;85(6):1925–9 (discussion 1929).
14.
go back to reference Pêgo-Fernandes PM, Said MM, Pazetti R, et al. Effects of azathioprine on mucociliary clearance after bronchial section and anastomosis in a rat experimental model. J Bras Pneumol. 2008;34(5):273–9.CrossRef Pêgo-Fernandes PM, Said MM, Pazetti R, et al. Effects of azathioprine on mucociliary clearance after bronchial section and anastomosis in a rat experimental model. J Bras Pneumol. 2008;34(5):273–9.CrossRef
15.
go back to reference Silva VFP, Pazetti R, Soto SF, et al. Effects of mycophenolate sodium on mucociliary clearance using a bronchial section and anastomosis rodent model. Clinics. 2011;66(8):1451–5.PubMedCrossRef Silva VFP, Pazetti R, Soto SF, et al. Effects of mycophenolate sodium on mucociliary clearance using a bronchial section and anastomosis rodent model. Clinics. 2011;66(8):1451–5.PubMedCrossRef
16.
go back to reference King MB, Jessurun J, Savik SK, et al. Cyclosporine reduces development of obliterative bronchiolitis in a murine heterotopic airway model. Transplantation. 1997;63(4):528–32.PubMedCrossRef King MB, Jessurun J, Savik SK, et al. Cyclosporine reduces development of obliterative bronchiolitis in a murine heterotopic airway model. Transplantation. 1997;63(4):528–32.PubMedCrossRef
17.
go back to reference Ropponen JO, Syrjälä SO, Krebs R, et al. Innate and adaptive immune responses in obliterative airway disease in rat tracheal allografts. J Heart Lung Transpl. 2011;30:707–16.CrossRef Ropponen JO, Syrjälä SO, Krebs R, et al. Innate and adaptive immune responses in obliterative airway disease in rat tracheal allografts. J Heart Lung Transpl. 2011;30:707–16.CrossRef
18.
go back to reference Yonan NA, Bishop P, El-Gamel A, et al. Tracheal allograft transplantation in rats: the role of immunosuppressive agents in development of obliterative airway disease. Transpl Proc. 1998;30:2207–9.CrossRef Yonan NA, Bishop P, El-Gamel A, et al. Tracheal allograft transplantation in rats: the role of immunosuppressive agents in development of obliterative airway disease. Transpl Proc. 1998;30:2207–9.CrossRef
19.
go back to reference Deuse T, Schrepfer S, Koch-Nolte F, et al. FK778 and tacrolimus prevent the development of obliterative airway disease after heterotopic rat tracheal transplantation. J Heart Lung Transpl. 2005;24:1844–54.CrossRef Deuse T, Schrepfer S, Koch-Nolte F, et al. FK778 and tacrolimus prevent the development of obliterative airway disease after heterotopic rat tracheal transplantation. J Heart Lung Transpl. 2005;24:1844–54.CrossRef
20.
go back to reference Schrepfer S, Deuse T, Sydow K, et al. Tracheal allograft transplantation in rats: the role of different immunosuppressants on preservation of respiratory epithelium. Transpl Proc. 2006;38(3):741–4.CrossRef Schrepfer S, Deuse T, Sydow K, et al. Tracheal allograft transplantation in rats: the role of different immunosuppressants on preservation of respiratory epithelium. Transpl Proc. 2006;38(3):741–4.CrossRef
21.
go back to reference Matsumura Y, Marchevsky A, Zuo XJ, et al. Assessment of pathological changes associated with chronic allograft rejection and tolerance in two experimental models of rat lung transplantation. Transplantation. 1995;59:1509.PubMed Matsumura Y, Marchevsky A, Zuo XJ, et al. Assessment of pathological changes associated with chronic allograft rejection and tolerance in two experimental models of rat lung transplantation. Transplantation. 1995;59:1509.PubMed
22.
go back to reference Uyama T, Winter JB, Groen G, et al. Late airway changes caused by chronic rejection in rat lung allografts. Transplantation. 1992;54:809.PubMedCrossRef Uyama T, Winter JB, Groen G, et al. Late airway changes caused by chronic rejection in rat lung allografts. Transplantation. 1992;54:809.PubMedCrossRef
23.
go back to reference Schmid RA, Kwong K, Boasquevisque CH, et al. A chronic large animal model of lung allograft rejection. Transpl Proc. 1997;29:1521.CrossRef Schmid RA, Kwong K, Boasquevisque CH, et al. A chronic large animal model of lung allograft rejection. Transpl Proc. 1997;29:1521.CrossRef
24.
go back to reference Xavier AM, Pêgo-Fernandes PM, Correia AT, et al. Influence of cyclosporine A on mucociliary system after lung transplantation in rats. Acta Cir Bras. 2007;22(6):465–9.PubMedCrossRef Xavier AM, Pêgo-Fernandes PM, Correia AT, et al. Influence of cyclosporine A on mucociliary system after lung transplantation in rats. Acta Cir Bras. 2007;22(6):465–9.PubMedCrossRef
25.
go back to reference Bedi DS, Riella LV, Tullius SG, et al. Animal models of chronic allograft injury: contributions and limitations to understanding the mechanism of long-term graft dysfunction. Transplantation. 2010;90:935–44.PubMedCrossRef Bedi DS, Riella LV, Tullius SG, et al. Animal models of chronic allograft injury: contributions and limitations to understanding the mechanism of long-term graft dysfunction. Transplantation. 2010;90:935–44.PubMedCrossRef
26.
go back to reference Deuse T, Schrepfer S, Reichenspurner H, et al. Techniques for experimental heterotopic and orthotopic tracheal transplantations—when to use which model? Transpl Immunol. 2007;17:255–61.PubMedCrossRef Deuse T, Schrepfer S, Reichenspurner H, et al. Techniques for experimental heterotopic and orthotopic tracheal transplantations—when to use which model? Transpl Immunol. 2007;17:255–61.PubMedCrossRef
27.
go back to reference Borger P, Kauffman HF, Timmerman JAB, et al. Cyclosporine, FK506, mycophenolate mofetil, and prednisolone differentially modulate cytokine gene expression in human airway derived epithelial cells. Transplantation. 2000;69(7):1408–13.PubMedCrossRef Borger P, Kauffman HF, Timmerman JAB, et al. Cyclosporine, FK506, mycophenolate mofetil, and prednisolone differentially modulate cytokine gene expression in human airway derived epithelial cells. Transplantation. 2000;69(7):1408–13.PubMedCrossRef
28.
go back to reference Floreth T, Stern E, Tu Y, et al. Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine. Respir Res. 2011;12:44.PubMedCrossRef Floreth T, Stern E, Tu Y, et al. Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine. Respir Res. 2011;12:44.PubMedCrossRef
29.
go back to reference Kostakis A. Early experience with cyclosporine: a historic perspective. Transpl Proc. 2004;36(Suppl. 2S):22S–24S. Kostakis A. Early experience with cyclosporine: a historic perspective. Transpl Proc. 2004;36(Suppl. 2S):22S–24S.
30.
go back to reference Bhorade SM, Stern E. Immunosuppression for lung transplantation. Proc Am Thorac Soc. 2009;6:47–53.PubMedCrossRef Bhorade SM, Stern E. Immunosuppression for lung transplantation. Proc Am Thorac Soc. 2009;6:47–53.PubMedCrossRef
31.
go back to reference Parekh K, Trulock E, Patterson GA. Use of cyclosporine in lung transplantation. Transpl Proc. 2004;36(Suppl 2S):318S–322S. Parekh K, Trulock E, Patterson GA. Use of cyclosporine in lung transplantation. Transpl Proc. 2004;36(Suppl 2S):318S–322S.
32.
go back to reference Treede H, Glanville AR, Klepetko W, et al. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transpl. 2012;31(8):797–804.CrossRef Treede H, Glanville AR, Klepetko W, et al. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transpl. 2012;31(8):797–804.CrossRef
33.
go back to reference Akhlaghi F, Gonzalez L, Trull AK. Association between cyclosporine concentrations at 2 h post-dose and clinical outcomes in de novo lung transplant recipients. J Heart Lung Transpl. 2005;24(12):2120–8.CrossRef Akhlaghi F, Gonzalez L, Trull AK. Association between cyclosporine concentrations at 2 h post-dose and clinical outcomes in de novo lung transplant recipients. J Heart Lung Transpl. 2005;24(12):2120–8.CrossRef
34.
go back to reference Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther. 2006;112:184–98.PubMedCrossRef Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther. 2006;112:184–98.PubMedCrossRef
35.
go back to reference Malinowski M, Martus P, Lock JF, Neuhaus P, Stockmann M. Systemic influence of immunosuppressive drugs on small and large bowel transport and barrier function. Transpl Inter. 2011;24:184–93.CrossRef Malinowski M, Martus P, Lock JF, Neuhaus P, Stockmann M. Systemic influence of immunosuppressive drugs on small and large bowel transport and barrier function. Transpl Inter. 2011;24:184–93.CrossRef
36.
go back to reference Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993;142(6):1945–51.PubMed Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993;142(6):1945–51.PubMed
37.
go back to reference Adams BF, Berry GJ, Huang X, et al. Immunosuppressive therapies for the prevention and treatment of obliterative airway disease in heterotopic rat trachea allografts. Transplantation. 2000;69(11):2260–6.PubMedCrossRef Adams BF, Berry GJ, Huang X, et al. Immunosuppressive therapies for the prevention and treatment of obliterative airway disease in heterotopic rat trachea allografts. Transplantation. 2000;69(11):2260–6.PubMedCrossRef
38.
go back to reference Koskinen PK, Kallio EA, Krebs R, et al. A dose-dependent inhibitory effect of cyclosporine A on obliterative bronchiolitis of rat tracheal allografts. Am J Respir Crit Care Med. 1997;155(1):303–12.PubMedCrossRef Koskinen PK, Kallio EA, Krebs R, et al. A dose-dependent inhibitory effect of cyclosporine A on obliterative bronchiolitis of rat tracheal allografts. Am J Respir Crit Care Med. 1997;155(1):303–12.PubMedCrossRef
39.
go back to reference Takao M, Gu Y, Shimamoto A, Adachi K, Namikawa S, Yada I. Administration of exogenous interleukin-2 enhances obliterative airway disease in cyclosporine-treated rats following tracheal allografts. Transplant Proc. 1999;31:180–1.PubMedCrossRef Takao M, Gu Y, Shimamoto A, Adachi K, Namikawa S, Yada I. Administration of exogenous interleukin-2 enhances obliterative airway disease in cyclosporine-treated rats following tracheal allografts. Transplant Proc. 1999;31:180–1.PubMedCrossRef
40.
go back to reference Neuringer I, Walsh S, Mannon R, Gabriel S, Aris RM. Enhanced T cell cytokine gene expression in mouse airway obliterative bronchiolitis. Transplantation. 2000;69(3):399–405.PubMedCrossRef Neuringer I, Walsh S, Mannon R, Gabriel S, Aris RM. Enhanced T cell cytokine gene expression in mouse airway obliterative bronchiolitis. Transplantation. 2000;69(3):399–405.PubMedCrossRef
41.
go back to reference Fernández FG, Jaramillo A, Chen C, et al. Airway epithelium is the primary target of allograft rejection in murine obliterative airway disease. Am J Transpl. 2004;4(3):319–25.CrossRef Fernández FG, Jaramillo A, Chen C, et al. Airway epithelium is the primary target of allograft rejection in murine obliterative airway disease. Am J Transpl. 2004;4(3):319–25.CrossRef
42.
go back to reference Delaere PR, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Head Neck Surg. 1996;122(11):1201–8.PubMedCrossRef Delaere PR, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Head Neck Surg. 1996;122(11):1201–8.PubMedCrossRef
43.
go back to reference Genden EM, Boros P, Liu J, Bromberg JS, Mayer L. Orthotopic tracheal transplantation in the murine model. Transplantation. 2002;73(9):1420–5.PubMedCrossRef Genden EM, Boros P, Liu J, Bromberg JS, Mayer L. Orthotopic tracheal transplantation in the murine model. Transplantation. 2002;73(9):1420–5.PubMedCrossRef
44.
go back to reference Padrid PA, Cozzi P, Leff AR. Cyclosporine A inhibits airway reactivity and remodeling after chronic antigen challenge in cats. Am J Respir Crit Care Med. 1996;154(6):1812–8.PubMedCrossRef Padrid PA, Cozzi P, Leff AR. Cyclosporine A inhibits airway reactivity and remodeling after chronic antigen challenge in cats. Am J Respir Crit Care Med. 1996;154(6):1812–8.PubMedCrossRef
45.
go back to reference Iacono AT, Corcoran TE, Griffith BP, et al. Aerosol cyclosporin therapy in lung transplant recipients with bronchiolitis obliterans. Eur Respir J. 2004;23:384–90.PubMedCrossRef Iacono AT, Corcoran TE, Griffith BP, et al. Aerosol cyclosporin therapy in lung transplant recipients with bronchiolitis obliterans. Eur Respir J. 2004;23:384–90.PubMedCrossRef
46.
go back to reference Waters V, Sokol S, Reddy B, et al. The effect of cyclosporin A on airway cell proinflammatory signaling and pneumonia. Am J Respir Cell Mol Biol. 2005;33:138–44.PubMedCrossRef Waters V, Sokol S, Reddy B, et al. The effect of cyclosporin A on airway cell proinflammatory signaling and pneumonia. Am J Respir Cell Mol Biol. 2005;33:138–44.PubMedCrossRef
47.
go back to reference Aris RM, McNeillie P, Olusesi O, et al. Cyclosporine alters airway epithelial cell cytokine secretion: a potential mechanism to explain the efficacy of inhaled cyclosporine [abstract]. J Heart Lung Transpl. 2008;27:S206. Aris RM, McNeillie P, Olusesi O, et al. Cyclosporine alters airway epithelial cell cytokine secretion: a potential mechanism to explain the efficacy of inhaled cyclosporine [abstract]. J Heart Lung Transpl. 2008;27:S206.
48.
go back to reference Hostettler KE, Roth M, Burgess JK, et al. Cyclosporine A mediates fibroproliferation through epithelial cells. Transplantation. 2004;77:1886–93.PubMedCrossRef Hostettler KE, Roth M, Burgess JK, et al. Cyclosporine A mediates fibroproliferation through epithelial cells. Transplantation. 2004;77:1886–93.PubMedCrossRef
49.
go back to reference Ha EY, Mun KC. Effect of cyclosporine on apoptosis in bronchial epithelial cells. Transpl Proc. 2012;44:985–7.CrossRef Ha EY, Mun KC. Effect of cyclosporine on apoptosis in bronchial epithelial cells. Transpl Proc. 2012;44:985–7.CrossRef
50.
go back to reference Jeon DS, Ha EY, Mun KC. Effects of cyclosporine on oxidative stress in human bronchial epithelial cells. Transpl Proc. 2012;44:988–90.CrossRef Jeon DS, Ha EY, Mun KC. Effects of cyclosporine on oxidative stress in human bronchial epithelial cells. Transpl Proc. 2012;44:988–90.CrossRef
51.
go back to reference Reichenspurner H. Overview of tacrolimus-based immunosuppression after heart or lung transplantation. J Heart Lung Transpl. 2005;24:119–30.CrossRef Reichenspurner H. Overview of tacrolimus-based immunosuppression after heart or lung transplantation. J Heart Lung Transpl. 2005;24:119–30.CrossRef
52.
go back to reference Snell GI, Westall GP. Immunosuppression for lung transplantation evidence to date. Drugs. 2007;67(11):1531–9.PubMedCrossRef Snell GI, Westall GP. Immunosuppression for lung transplantation evidence to date. Drugs. 2007;67(11):1531–9.PubMedCrossRef
53.
go back to reference Scott LJ, McKeage K, Keam SJ, Plosker GL. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs. 2003;63(12):1247–97.PubMedCrossRef Scott LJ, McKeage K, Keam SJ, Plosker GL. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs. 2003;63(12):1247–97.PubMedCrossRef
54.
go back to reference Watkins KD, Boettger RF, Hanger KM, et al. Use of sublingual tacrolimus in lung transplant recipients. J Heart Lung Transpl. 2012;31(2):127–32.CrossRef Watkins KD, Boettger RF, Hanger KM, et al. Use of sublingual tacrolimus in lung transplant recipients. J Heart Lung Transpl. 2012;31(2):127–32.CrossRef
55.
go back to reference Schrepfer S, Deuse T, Reichenspurner H, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transpl. 2007;7:1733–42.CrossRef Schrepfer S, Deuse T, Reichenspurner H, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transpl. 2007;7:1733–42.CrossRef
56.
go back to reference Deuse T, Blankenberg F, Haddad M, et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol. 2010;43:403–12.PubMedCrossRef Deuse T, Blankenberg F, Haddad M, et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol. 2010;43:403–12.PubMedCrossRef
57.
go back to reference Hollmén M, Tikkanen JM, Nykänen AI, et al. Tacrolimus treatment effectively inhibits progression of obliterative airway disease even at later stages of disease development. J Heart Lung Transpl. 2008;27:856–64.CrossRef Hollmén M, Tikkanen JM, Nykänen AI, et al. Tacrolimus treatment effectively inhibits progression of obliterative airway disease even at later stages of disease development. J Heart Lung Transpl. 2008;27:856–64.CrossRef
58.
go back to reference Hodge SJ, Hodge GL, Reynolds PN, et al. Differential rates of apoptosis in bronchoalveolar lavage and blood of lung transplant patients. J Heart Lung Transpl. 2005;24:1305–14.CrossRef Hodge SJ, Hodge GL, Reynolds PN, et al. Differential rates of apoptosis in bronchoalveolar lavage and blood of lung transplant patients. J Heart Lung Transpl. 2005;24:1305–14.CrossRef
59.
go back to reference Hodge S, Hodge G, Ahern J, et al. Increased levels of T cell granzyme b in bronchiolitis obliterans syndrome are not suppressed adequately by current immunosuppressive regimens. Clin Exp Immunol. 2009;158:230–6.PubMedCrossRef Hodge S, Hodge G, Ahern J, et al. Increased levels of T cell granzyme b in bronchiolitis obliterans syndrome are not suppressed adequately by current immunosuppressive regimens. Clin Exp Immunol. 2009;158:230–6.PubMedCrossRef
60.
go back to reference Evans JH, Sanderson MJ. Intracellular calcium oscillations regulate ciliary beat frequency of airway epithelial cells. Cell Calcium. 1999;26(3–4):103–10.PubMedCrossRef Evans JH, Sanderson MJ. Intracellular calcium oscillations regulate ciliary beat frequency of airway epithelial cells. Cell Calcium. 1999;26(3–4):103–10.PubMedCrossRef
61.
go back to reference Bultynck G, De Smet P, Weidema AF, et al. Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. J Physiol. 2000;525(3):681–93.PubMedCrossRef Bultynck G, De Smet P, Weidema AF, et al. Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. J Physiol. 2000;525(3):681–93.PubMedCrossRef
62.
go back to reference Kanoh S, Kondo M, Tamaoki J, et al. Effect of FK506 on ATP-induced intracellular calcium oscillations in cow tracheal epithelium. Am J Physiol. 1999;276:L891–9.PubMed Kanoh S, Kondo M, Tamaoki J, et al. Effect of FK506 on ATP-induced intracellular calcium oscillations in cow tracheal epithelium. Am J Physiol. 1999;276:L891–9.PubMed
63.
go back to reference Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Invest. 2003;111(8):1122–4.PubMed Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Invest. 2003;111(8):1122–4.PubMed
64.
go back to reference Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1):23–46.PubMedCrossRef Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1):23–46.PubMedCrossRef
65.
go back to reference Hopkins PM, McNeil K. Evidence for immunosuppression in lung transplantation. Curr Opin Organ Transpl. 2008;13(5):477–83.CrossRef Hopkins PM, McNeil K. Evidence for immunosuppression in lung transplantation. Curr Opin Organ Transpl. 2008;13(5):477–83.CrossRef
66.
go back to reference Maasilta PK, Salminen US, Lautenschlager I, Taskinen E, Harjula A. Immune cells and immunosuppression in a porcine bronchial model of obliterative bronchiolitis. Transplantation. 2001;72(6):998–1005.PubMedCrossRef Maasilta PK, Salminen US, Lautenschlager I, Taskinen E, Harjula A. Immune cells and immunosuppression in a porcine bronchial model of obliterative bronchiolitis. Transplantation. 2001;72(6):998–1005.PubMedCrossRef
67.
go back to reference Snell GI, Levvey BJ, Zheng L, et al. Everolimus alters the bronchoalveolar lavage and endobronchial biopsy immunologic profile post-human lung transplantation. Am J Transpl. 2005;5:1446–51.CrossRef Snell GI, Levvey BJ, Zheng L, et al. Everolimus alters the bronchoalveolar lavage and endobronchial biopsy immunologic profile post-human lung transplantation. Am J Transpl. 2005;5:1446–51.CrossRef
68.
go back to reference Kim HK, Rao VP, Park YS, et al. Pulmonary arterial reactivity during induced infection of single lung allografts. Eur J Cardiothorac Surg. 2007;31:475–81.PubMedCrossRef Kim HK, Rao VP, Park YS, et al. Pulmonary arterial reactivity during induced infection of single lung allografts. Eur J Cardiothorac Surg. 2007;31:475–81.PubMedCrossRef
69.
go back to reference Snell GI, Levvey BJ, Zheng L, et al. Interleukin-17 and airway inflammation: a longitudinal airway biopsy study after lung transplantation. J Heart Lung Transpl. 2007;26:669–74.CrossRef Snell GI, Levvey BJ, Zheng L, et al. Interleukin-17 and airway inflammation: a longitudinal airway biopsy study after lung transplantation. J Heart Lung Transpl. 2007;26:669–74.CrossRef
70.
go back to reference Palmer SM, Baz MA, Sanders L, et al. Results of a randomized prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71:1772–6.PubMedCrossRef Palmer SM, Baz MA, Sanders L, et al. Results of a randomized prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71:1772–6.PubMedCrossRef
71.
go back to reference McNeil K, Glanville AR, Wahlers T, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81:998–1003.PubMedCrossRef McNeil K, Glanville AR, Wahlers T, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81:998–1003.PubMedCrossRef
72.
go back to reference Bhorade S, Ahya VN, Baz MA, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183:379–87.PubMedCrossRef Bhorade S, Ahya VN, Baz MA, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183:379–87.PubMedCrossRef
73.
go back to reference Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transpl. 2006;6:169–77.CrossRef Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transpl. 2006;6:169–77.CrossRef
74.
go back to reference Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23:159–71.PubMedCrossRef Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23:159–71.PubMedCrossRef
75.
go back to reference Korom S, Boehler A, Weder W. Immunosuppressive therapy in lung transplantation: state of the art. Eur J Cardiothorac Surg. 2009;35(6):1045–55.PubMedCrossRef Korom S, Boehler A, Weder W. Immunosuppressive therapy in lung transplantation: state of the art. Eur J Cardiothorac Surg. 2009;35(6):1045–55.PubMedCrossRef
77.
go back to reference He H, Ding H, Liao A, et al. Effects of mycophenolate mofetil on proliferation and mucin-5AC expression in human conjunctival goblet cells in vitro. Mol Vis. 2010;16:1913–9.PubMed He H, Ding H, Liao A, et al. Effects of mycophenolate mofetil on proliferation and mucin-5AC expression in human conjunctival goblet cells in vitro. Mol Vis. 2010;16:1913–9.PubMed
78.
go back to reference Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.PubMedCrossRef Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.PubMedCrossRef
79.
go back to reference Liu C, Schreiter T, Frilling A, et al. Cyclosporine A, FK-506, 40-0-[2-hydroxyethyl]rapamycin and mycophenolate mofetil inhibit proliferation of human intrahepatic biliary epithelial cells in vitro. World J Gastroenterol. 2005;11(48):7602–5.PubMed Liu C, Schreiter T, Frilling A, et al. Cyclosporine A, FK-506, 40-0-[2-hydroxyethyl]rapamycin and mycophenolate mofetil inhibit proliferation of human intrahepatic biliary epithelial cells in vitro. World J Gastroenterol. 2005;11(48):7602–5.PubMed
80.
go back to reference Chen G, Korfhagen TR, Xu Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 2009;119(10):2914–24.PubMed Chen G, Korfhagen TR, Xu Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 2009;119(10):2914–24.PubMed
81.
go back to reference Miljkovic DJ, Cvetkovic I, Stosic-Grujicic S, Trajkovic V. Mycophenolic acid inhibits activation of inducible nitric oxide synthase in rodent fibroblasts. Clin Exp Immunol. 2003;132:239–46.PubMedCrossRef Miljkovic DJ, Cvetkovic I, Stosic-Grujicic S, Trajkovic V. Mycophenolic acid inhibits activation of inducible nitric oxide synthase in rodent fibroblasts. Clin Exp Immunol. 2003;132:239–46.PubMedCrossRef
82.
go back to reference Thompson ML, Flynn JD, Clifford TM. Pharmacotherapy of lung transplantation: an overview. J Pharm Pract. 2013;26(1):5–13.PubMedCrossRef Thompson ML, Flynn JD, Clifford TM. Pharmacotherapy of lung transplantation: an overview. J Pharm Pract. 2013;26(1):5–13.PubMedCrossRef
83.
go back to reference Whitford H, Walters EH, Levvey B, et al. Addition of inhaled corticosteroids to systemic immunosuppression after lung transplantation: a double-blind, placebo-controlled trial. Transplantation. 2002;73(11):1793–9.PubMedCrossRef Whitford H, Walters EH, Levvey B, et al. Addition of inhaled corticosteroids to systemic immunosuppression after lung transplantation: a double-blind, placebo-controlled trial. Transplantation. 2002;73(11):1793–9.PubMedCrossRef
84.
go back to reference Shah RV, Amin M, Sangwan S, et al. Steroid effects on mucociliary clearance in outpatient asthma. J Aerosol Med. 2006;19(2):208–20.PubMedCrossRef Shah RV, Amin M, Sangwan S, et al. Steroid effects on mucociliary clearance in outpatient asthma. J Aerosol Med. 2006;19(2):208–20.PubMedCrossRef
85.
go back to reference Pujols L, Mullol J, Picado C. Glucocorticoid receptor in human respiratory epithelial cells. NeuroImmunomodulation. 2009;16(5):290–9.CrossRef Pujols L, Mullol J, Picado C. Glucocorticoid receptor in human respiratory epithelial cells. NeuroImmunomodulation. 2009;16(5):290–9.CrossRef
86.
go back to reference Agnew JE, Bateman JR, Pavia D, Clarke SW. Peripheral airways mucus clearance in stable asthma is improved by oral corticosteroid therapy. Bull Eur Physiopathol Respir. 1984;20(3):295–301.PubMed Agnew JE, Bateman JR, Pavia D, Clarke SW. Peripheral airways mucus clearance in stable asthma is improved by oral corticosteroid therapy. Bull Eur Physiopathol Respir. 1984;20(3):295–301.PubMed
87.
go back to reference Hanania NA, Chapman KR, Kesten S. Adverse effects of inhaled corticosteroids. Am J Med. 1995;98(2):196–208.PubMedCrossRef Hanania NA, Chapman KR, Kesten S. Adverse effects of inhaled corticosteroids. Am J Med. 1995;98(2):196–208.PubMedCrossRef
88.
go back to reference Oliveira-Braga KA, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. Effects of prednisone on mucociliary clearance in a murine model. Transpl Proc. 2012;44:2486–9.CrossRef Oliveira-Braga KA, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. Effects of prednisone on mucociliary clearance in a murine model. Transpl Proc. 2012;44:2486–9.CrossRef
89.
go back to reference Braga KAO, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. The effects on mucociliary clearance of prednisone associated with bronchial section. Clinics. 2012;67(6):647–51.PubMedCrossRef Braga KAO, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. The effects on mucociliary clearance of prednisone associated with bronchial section. Clinics. 2012;67(6):647–51.PubMedCrossRef
90.
go back to reference Doerner AM, Zuraw BL. TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir Res. 2009;10:100.PubMedCrossRef Doerner AM, Zuraw BL. TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir Res. 2009;10:100.PubMedCrossRef
91.
go back to reference Li CW, Shi L, Zhang KK, et al. Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. J Allergy Clin Immunol. 2011;127:765–72.PubMedCrossRef Li CW, Shi L, Zhang KK, et al. Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. J Allergy Clin Immunol. 2011;127:765–72.PubMedCrossRef
Metadata
Title
Adverse Effects of Immunosuppressant Drugs upon Airway Epithelial Cell and Mucociliary Clearance: Implications for Lung Transplant Recipients
Authors
Rogerio Pazetti
Paulo Manuel Pêgo-Fernandes
Fabio Biscegli Jatene
Publication date
01-07-2013
Publisher
Springer International Publishing
Published in
Drugs / Issue 11/2013
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-013-0089-0

Other articles of this Issue 11/2013

Drugs 11/2013 Go to the issue