Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2017

Open Access 01-09-2017 | Topic Review

Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas

Authors: Ting Zhang, Zijiang Yang, Heng Gao

Published in: Journal of Neuro-Oncology | Issue 2/2017

Login to get access

Abstract

Pituitary adenomas (PAs), single-clone adenomas arising from pituitary gland cells, comprise one of the most frequent tumors found in the sella region. The prevalence of PAs is approximately 15%, third only after gliomas and meningioma among intracranial tumors. Autopsy and radiological analysis found that the incidence of PAs is approximately 22.5%. Most PAs are benign, although a few are malignant. Just 0.1% of patients with PAs develop pituitary carcinoma. However, owing to mass effects and unregulated secretion of pituitary hormones, PAs also lead to serious morbidity. The low rate of diagnosis at onset and the lack of effective treatments for patients with recurrent disease increase the morbidity rates. Therefore, there is an urgent need to ascertain the pathological mechanism of PAs for improved diagnosis and development of specific therapies. At present, the pathogenesis of PAs is poorly understood; however, disruption of the cell cycle is known to play an important role. MicroRNAs are short noncoding RNAs that regulate gene expression at the post-transcriptional level and play a role in regulating genes involved in carcinogenesis or tumor suppression. Previous studies have demonstrated a strong connection between dysregulation of microRNAs and dysregulation of the cell cycle in PAs. In this review, we summarize the recent progress in the study of microRNA dysregulation resulting in disruption of the cell cycle in PAs.
Literature
1.
go back to reference Karp X, Ambros V (2005) Developmental biology. Encountering microRNAs in cell fate signaling. Science 310:1288–1289CrossRefPubMed Karp X, Ambros V (2005) Developmental biology. Encountering microRNAs in cell fate signaling. Science 310:1288–1289CrossRefPubMed
2.
go back to reference Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86CrossRefPubMed Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86CrossRefPubMed
4.
go back to reference Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human microRNAs and indications for an involvement of microRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297CrossRefPubMedPubMedCentral Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human microRNAs and indications for an involvement of microRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297CrossRefPubMedPubMedCentral
5.
go back to reference Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203CrossRefPubMedPubMedCentral Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203CrossRefPubMedPubMedCentral
6.
go back to reference Scheithauer B, Soni D, Kovacs K et al (2009) Cyclin D1 immunoexpression in adenohypophysial tumors. J Neuropathol Exp Neurol 68:589 Scheithauer B, Soni D, Kovacs K et al (2009) Cyclin D1 immunoexpression in adenohypophysial tumors. J Neuropathol Exp Neurol 68:589
7.
go back to reference Hewedi IH, Osman WM, El Mahdy MM (2011) Differential expression of cyclin D1 in human pituitary tumors: relation to MIB-1 and p27/Kip1 labeling indices. J Egypt Natl Cancer Inst 23:171–179CrossRef Hewedi IH, Osman WM, El Mahdy MM (2011) Differential expression of cyclin D1 in human pituitary tumors: relation to MIB-1 and p27/Kip1 labeling indices. J Egypt Natl Cancer Inst 23:171–179CrossRef
8.
go back to reference Gong J, Diao B, Yao GJ, Liu Y, Xu GZ (2013) Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma. J Genet 92:489–497CrossRefPubMed Gong J, Diao B, Yao GJ, Liu Y, Xu GZ (2013) Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma. J Genet 92:489–497CrossRefPubMed
9.
go back to reference Qian ZR, Asa SL, Siomi H et al (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441CrossRefPubMed Qian ZR, Asa SL, Siomi H et al (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441CrossRefPubMed
10.
go back to reference Gentilin E, Tagliati F, Filieri C et al (2013) miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cdelta. Endocrinology 154:1690–1700CrossRefPubMedPubMedCentral Gentilin E, Tagliati F, Filieri C et al (2013) miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cdelta. Endocrinology 154:1690–1700CrossRefPubMedPubMedCentral
11.
go back to reference Liang S, Chen L, Huang H, Zhi D (2013) The experimental study of microRNA in pituitary adenomas. Turk Neurosurg 23:721–727PubMed Liang S, Chen L, Huang H, Zhi D (2013) The experimental study of microRNA in pituitary adenomas. Turk Neurosurg 23:721–727PubMed
12.
go back to reference Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285CrossRefPubMed Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285CrossRefPubMed
14.
go back to reference Deshpande A, Pastore A, Deshpande AJ et al (2009) 3′UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle 8:3592–3600CrossRefPubMed Deshpande A, Pastore A, Deshpande AJ et al (2009) 3′UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle 8:3592–3600CrossRefPubMed
15.
go back to reference Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722CrossRefPubMed Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722CrossRefPubMed
16.
go back to reference Amaral FC, Torres N, Saggioro F et al (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323CrossRefPubMed Amaral FC, Torres N, Saggioro F et al (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323CrossRefPubMed
18.
go back to reference Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMed Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMed
19.
go back to reference Jackson DN, Foster DA (2004) The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 18:627–636CrossRefPubMed Jackson DN, Foster DA (2004) The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 18:627–636CrossRefPubMed
21.
go back to reference Wang DS, Zhang HQ, Zhang B et al (2016) miR-133 inhibits pituitary tumor cell migration and invasion via down-regulating FOXC1 expression. Genet Mol Res 15. doi:10.4238/gmr.15017453 Wang DS, Zhang HQ, Zhang B et al (2016) miR-133 inhibits pituitary tumor cell migration and invasion via down-regulating FOXC1 expression. Genet Mol Res 15. doi:10.​4238/​gmr.​15017453
22.
go back to reference Chen S, Jiao S, Jia Y, Li Y (2016) Effects of targeted silencing of FOXC1 gene on proliferation and in vitro migration of human non-small-cell lung carcinoma cells. Am J Transl Res 15(8):3309–3318 Chen S, Jiao S, Jia Y, Li Y (2016) Effects of targeted silencing of FOXC1 gene on proliferation and in vitro migration of human non-small-cell lung carcinoma cells. Am J Transl Res 15(8):3309–3318
23.
go back to reference D’Angelo D, Palmieri D, Mussnich P et al (2012) Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of microRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 97:E1128–E1138CrossRefPubMed D’Angelo D, Palmieri D, Mussnich P et al (2012) Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of microRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 97:E1128–E1138CrossRefPubMed
24.
go back to reference Massimi I, Guerrieri F, Petroni M et al (2013) The HMGA1 protoncogene frequently deregulated in cancer is a transcriptional target of E2F1. Mol Carcinog 52:526–534CrossRefPubMed Massimi I, Guerrieri F, Petroni M et al (2013) The HMGA1 protoncogene frequently deregulated in cancer is a transcriptional target of E2F1. Mol Carcinog 52:526–534CrossRefPubMed
25.
go back to reference Leone V, Langella C, D’Angelo D et al (2014) Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol 390:1–7CrossRefPubMed Leone V, Langella C, D’Angelo D et al (2014) Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol 390:1–7CrossRefPubMed
26.
go back to reference De Martino I, Visone R, Wierinckx A et al (2009) HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 69:1844–1850CrossRefPubMed De Martino I, Visone R, Wierinckx A et al (2009) HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 69:1844–1850CrossRefPubMed
27.
go back to reference Palmieri D, D’Angelo D, Valentino T et al (2012) Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 31:3857–3865CrossRefPubMed Palmieri D, D’Angelo D, Valentino T et al (2012) Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 31:3857–3865CrossRefPubMed
28.
go back to reference Mussnich P, Raverot G, Jaffrain-Rea ML et al (2015) Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 14:2590–2597CrossRefPubMedPubMedCentral Mussnich P, Raverot G, Jaffrain-Rea ML et al (2015) Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 14:2590–2597CrossRefPubMedPubMedCentral
29.
go back to reference Butz H, Liko I, Czirjak S et al (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191CrossRefPubMed Butz H, Liko I, Czirjak S et al (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191CrossRefPubMed
30.
go back to reference McGowan CH, Russell P (1993) Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12:75–85PubMedPubMedCentral McGowan CH, Russell P (1993) Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12:75–85PubMedPubMedCentral
31.
go back to reference Butz H, Németh K, Czenke D et al (2016) Systematic investigation of expression of G2/M transition genes reveals CDC25 alteration in nonfunctioning pituitary adenomas. Pathol Oncol Res. doi:10.1007/s12253-016-0163-5 Butz H, Németh K, Czenke D et al (2016) Systematic investigation of expression of G2/M transition genes reveals CDC25 alteration in nonfunctioning pituitary adenomas. Pathol Oncol Res. doi:10.​1007/​s12253-016-0163-5
32.
go back to reference Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3:513–519PubMed Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3:513–519PubMed
33.
go back to reference Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65:3980–3985CrossRefPubMed Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65:3980–3985CrossRefPubMed
34.
go back to reference Wu ZB, Li WQ, Lin SJ et al (2014) MicroRNA expression profile of bromocriptine-resistant prolactinomas. Mol Cell Endocrinol 395:10–18CrossRefPubMed Wu ZB, Li WQ, Lin SJ et al (2014) MicroRNA expression profile of bromocriptine-resistant prolactinomas. Mol Cell Endocrinol 395:10–18CrossRefPubMed
35.
go back to reference Roche M, Wierinckx A, Croze S et al (2015) Deregulation of miR-183 and KIAA0101 in aggressive and kalignant pituitary tumors. Front Med 2:54CrossRef Roche M, Wierinckx A, Croze S et al (2015) Deregulation of miR-183 and KIAA0101 in aggressive and kalignant pituitary tumors. Front Med 2:54CrossRef
37.
go back to reference Liang HQ, Wang RJ, Diao CF et al (2015) The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget 6:29413–29427CrossRefPubMedPubMedCentral Liang HQ, Wang RJ, Diao CF et al (2015) The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget 6:29413–29427CrossRefPubMedPubMedCentral
38.
go back to reference Sivapragasam M, Rotondo F, Lloyd RV et al (2011) MicroRNAs in the human pituitary. Endocr Pathol 22:134–143CrossRefPubMed Sivapragasam M, Rotondo F, Lloyd RV et al (2011) MicroRNAs in the human pituitary. Endocr Pathol 22:134–143CrossRefPubMed
Metadata
Title
Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas
Authors
Ting Zhang
Zijiang Yang
Heng Gao
Publication date
01-09-2017
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2017
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-017-2518-5

Other articles of this Issue 2/2017

Journal of Neuro-Oncology 2/2017 Go to the issue