Skip to main content
Top
Published in: Radiation Oncology 1/2012

Open Access 01-12-2012 | Research

Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response

Authors: Shubhankar Suman, Manoj Maniar, Albert J Fornace Jr, Kamal Datta

Published in: Radiation Oncology | Issue 1/2012

Login to get access

Abstract

Background

Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity.

Methods

Male C3H/HeN mice (n = 5 mice per group; 6-8 weeks old) were exposed to a sub-lethal dose (5 Gy) of γ radiation using a 137Cs source at a dose rate of 0.77 Gy/min. Two doses of ON 01210.Na (500 mg/kg body weight) were administered subcutaneously at 24 h and 36 h after radiation exposure. Mitigation of hematopoietic toxicity by ON 01210.Na was investigated by peripheral white blood cell (WBC) and platelet counts at 3, 7, 21, and 28 d after radiation exposure. Granulocyte macrophage colony forming unit (GM-CFU) assay was done using isolated bone marrow cells, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) was performed on bone marrow sections at 7 d post-exposure. The DNA damage response pathway involving ataxia telangiectasia mutated (ATM) and p53 was investigated by Western blot in bone marrow cells at 7 d post-exposure.

Results

Compared to the vehicle, ON 01210.Na treated mice showed accelerated recovery of peripheral WBC and platelet counts. Post-irradiation treatment of mice with ON 01210.Na also resulted in higher GM-CFU counts. The mitigation effects were accompanied by attenuation of ATM-p53-dependent DNA damage response in the bone marrow cells of ON 01210.Na treated mice. Both phospho-ATM and phospho-p53 were significantly lower in the bone marrow cells of ON 01210.Na treated than in vehicle treated mice. Furthermore, the Bcl2:Bax ratio was higher in the drug treated mice than the vehicle treated groups.

Conclusions

ON 01210.Na treatment significantly mitigated the hematopoietic toxicity induced by a sub-lethal radiation dose. Mechanistically, attenuation of ATM-p53 mediated DNA damage response by ON 01210.Na is contributing to the mitigation of radiation-induced hematopoietic toxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nenot JC: Radiation accidents over the last 60 years. J Radiol Prot 2009, 29: 301-320. 10.1088/0952-4746/29/3/R01CrossRefPubMed Nenot JC: Radiation accidents over the last 60 years. J Radiol Prot 2009, 29: 301-320. 10.1088/0952-4746/29/3/R01CrossRefPubMed
2.
go back to reference Niazi AK, Niazi SK: Endocrine effects of Fukushima: Radiation-induced endocrinopathy. Indian J Endocrinol Metab 2011, 15: 91-95. 10.4103/2230-8210.81936PubMedCentralCrossRefPubMed Niazi AK, Niazi SK: Endocrine effects of Fukushima: Radiation-induced endocrinopathy. Indian J Endocrinol Metab 2011, 15: 91-95. 10.4103/2230-8210.81936PubMedCentralCrossRefPubMed
3.
go back to reference Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB: Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010, 15: 360-371. 10.1634/theoncologist.2009-S104PubMedCentralCrossRefPubMed Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB: Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010, 15: 360-371. 10.1634/theoncologist.2009-S104PubMedCentralCrossRefPubMed
5.
go back to reference Hall EJ, Giaccia AJ Philadelphia: Lippincott Williams & Wilkins; 2006. Hall EJ, Giaccia AJ Philadelphia: Lippincott Williams & Wilkins; 2006.
6.
go back to reference Moulder JE, Cohen EP: Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol 2007, 17: 141-148. 10.1016/j.semradonc.2006.11.010CrossRefPubMed Moulder JE, Cohen EP: Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol 2007, 17: 141-148. 10.1016/j.semradonc.2006.11.010CrossRefPubMed
7.
go back to reference Fliedner TM, Friesecke I, Graessle D, Paulsen C, Weiss M: Hematopoietic cell renewal as the limiting factor in low-level radiation exposure: diagnostic implications and therapeutic options. Mil Med 2002, 167: 46-48.PubMed Fliedner TM, Friesecke I, Graessle D, Paulsen C, Weiss M: Hematopoietic cell renewal as the limiting factor in low-level radiation exposure: diagnostic implications and therapeutic options. Mil Med 2002, 167: 46-48.PubMed
8.
go back to reference Williams JP, McBride WH: After the bomb drops: A new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int J Radiat Biol 2011. Williams JP, McBride WH: After the bomb drops: A new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int J Radiat Biol 2011.
9.
go back to reference Maurya DK, Devasagayam TP, Nair CK: Some novel approaches for radioprotection and the beneficial effect of natural products. Indian J Exp Biol 2006, 44: 93-114.PubMed Maurya DK, Devasagayam TP, Nair CK: Some novel approaches for radioprotection and the beneficial effect of natural products. Indian J Exp Biol 2006, 44: 93-114.PubMed
10.
go back to reference Nair CK, Parida DK, Nomura T: Radioprotectors in radiotherapy. J Radiat Res (Tokyo) 2001, 42: 21-37. 10.1269/jrr.42.21CrossRef Nair CK, Parida DK, Nomura T: Radioprotectors in radiotherapy. J Radiat Res (Tokyo) 2001, 42: 21-37. 10.1269/jrr.42.21CrossRef
11.
go back to reference Zhou BB, Elledge SJ: The DNA damage response: putting checkpoints in perspective. Nature 2000, 408: 433-439. 10.1038/35044005CrossRefPubMed Zhou BB, Elledge SJ: The DNA damage response: putting checkpoints in perspective. Nature 2000, 408: 433-439. 10.1038/35044005CrossRefPubMed
12.
go back to reference Tanaka T, Huang X, Jorgensen E, Gietl D, Traganos F, Darzynkiewicz Z, Albino AP: ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 2007, 8: 26. 10.1186/1471-2121-8-26PubMedCentralCrossRefPubMed Tanaka T, Huang X, Jorgensen E, Gietl D, Traganos F, Darzynkiewicz Z, Albino AP: ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 2007, 8: 26. 10.1186/1471-2121-8-26PubMedCentralCrossRefPubMed
13.
go back to reference Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M: ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001, 15: 1067-1077. 10.1101/gad.886901PubMedCentralCrossRefPubMed Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M: ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001, 15: 1067-1077. 10.1101/gad.886901PubMedCentralCrossRefPubMed
14.
go back to reference Bache M, Pigorsch S, Dunst J, Wurl P, Meye A, Bartel F, Schmidt H, Rath FW, Taubert H: Loss of G2/M arrest correlates with radiosensitization in two human sarcoma cell lines with mutant p53. Int J Cancer 2001, 96: 110-117. 10.1002/ijc.1002CrossRefPubMed Bache M, Pigorsch S, Dunst J, Wurl P, Meye A, Bartel F, Schmidt H, Rath FW, Taubert H: Loss of G2/M arrest correlates with radiosensitization in two human sarcoma cell lines with mutant p53. Int J Cancer 2001, 96: 110-117. 10.1002/ijc.1002CrossRefPubMed
15.
go back to reference Mazzatti DJ, Lee YJ, Helt CE, O'Reilly MA: p53 modulates radiation sensitivity independent of p21 transcriptional activation. Am J Clin Oncol 2005, 28: 43-50. 10.1097/01.coc.0000139484.51715.5aCrossRefPubMed Mazzatti DJ, Lee YJ, Helt CE, O'Reilly MA: p53 modulates radiation sensitivity independent of p21 transcriptional activation. Am J Clin Oncol 2005, 28: 43-50. 10.1097/01.coc.0000139484.51715.5aCrossRefPubMed
16.
go back to reference Zhan Q, Kontny U, Iglesias M, Alamo IJ, Yu K, Hollander MC, Woodworth CD, Fornace AJJ: Inhibitory effect of Bcl-2 on p53-mediated transactivation following genotoxic stress. Oncogene 1999, 18: 297-304. 10.1038/sj.onc.1202310CrossRefPubMed Zhan Q, Kontny U, Iglesias M, Alamo IJ, Yu K, Hollander MC, Woodworth CD, Fornace AJJ: Inhibitory effect of Bcl-2 on p53-mediated transactivation following genotoxic stress. Oncogene 1999, 18: 297-304. 10.1038/sj.onc.1202310CrossRefPubMed
17.
go back to reference Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW: Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 2006, 25: 2287-2296. 10.1038/sj.emboj.7601126PubMedCentralCrossRefPubMed Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW: Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 2006, 25: 2287-2296. 10.1038/sj.emboj.7601126PubMedCentralCrossRefPubMed
18.
go back to reference Ghosh SP, Perkins MW, Hieber K, Kulkarni S, Kao TC, Reddy EP, Reddy MV, Maniar M, Seed T, Kumar KS: Radiation protection by a new chemical entity Ex-Rad: efficacy and mechanisms. Radiat Res 2009, 171: 173-179. 10.1667/RR1367.1CrossRefPubMed Ghosh SP, Perkins MW, Hieber K, Kulkarni S, Kao TC, Reddy EP, Reddy MV, Maniar M, Seed T, Kumar KS: Radiation protection by a new chemical entity Ex-Rad: efficacy and mechanisms. Radiat Res 2009, 171: 173-179. 10.1667/RR1367.1CrossRefPubMed
19.
go back to reference Chun AW, Cosenza SC, Taft DR, Maniar M: Preclinical pharmacokinetics and in vitro activity of ON 01910.Na, a novel anti-cancer agent. Cancer Chemother Pharmacol 2009, 65: 177-186. 10.1007/s00280-009-1022-9CrossRefPubMed Chun AW, Cosenza SC, Taft DR, Maniar M: Preclinical pharmacokinetics and in vitro activity of ON 01910.Na, a novel anti-cancer agent. Cancer Chemother Pharmacol 2009, 65: 177-186. 10.1007/s00280-009-1022-9CrossRefPubMed
20.
go back to reference Chun AW, Freshwater RE, Taft DR, Gillum AM, Maniar M: Effects of formulation and route of administration on the systemic availability of Ex-RAD((R)), a new radioprotectant, in preclinical species. Biopharm Drug Dispos 2011, 32: 99-111. 10.1002/bdd.741CrossRefPubMed Chun AW, Freshwater RE, Taft DR, Gillum AM, Maniar M: Effects of formulation and route of administration on the systemic availability of Ex-RAD((R)), a new radioprotectant, in preclinical species. Biopharm Drug Dispos 2011, 32: 99-111. 10.1002/bdd.741CrossRefPubMed
21.
go back to reference Singh VK, Parekh VI, Brown DS, Kao TC, Mog SR: Tocopherol succinate: modulation of antioxidant enzymes and hematopoietic recovery. Int J Radiat Oncol Biol Phys 2011, 79: 571-578. 10.1016/j.ijrobp.2010.08.019CrossRefPubMed Singh VK, Parekh VI, Brown DS, Kao TC, Mog SR: Tocopherol succinate: modulation of antioxidant enzymes and hematopoietic recovery. Int J Radiat Oncol Biol Phys 2011, 79: 571-578. 10.1016/j.ijrobp.2010.08.019CrossRefPubMed
23.
go back to reference Pellmar TC, Rockwell S: Priority list of research areas for radiological nuclear threat countermeasures. Radiat Res 2005, 163: 115-123. 10.1667/RR3283CrossRefPubMed Pellmar TC, Rockwell S: Priority list of research areas for radiological nuclear threat countermeasures. Radiat Res 2005, 163: 115-123. 10.1667/RR3283CrossRefPubMed
24.
go back to reference Yang FT, Lord BI, Hendry JH: Gamma irradiation of the fetus damages the developing hemopoietic microenvironment rather than the hemopoietic progenitor cells. Radiat Res 1995, 141: 309-313. 10.2307/3579008CrossRefPubMed Yang FT, Lord BI, Hendry JH: Gamma irradiation of the fetus damages the developing hemopoietic microenvironment rather than the hemopoietic progenitor cells. Radiat Res 1995, 141: 309-313. 10.2307/3579008CrossRefPubMed
25.
go back to reference Gridley DS, Pecaut MJ: Whole-body irradiation and long-term modification of bone marrow-derived cell populations by low- and high-LET radiation. In Vivo 2006, 20: 781-789.PubMed Gridley DS, Pecaut MJ: Whole-body irradiation and long-term modification of bone marrow-derived cell populations by low- and high-LET radiation. In Vivo 2006, 20: 781-789.PubMed
26.
go back to reference Gridley DS, Pecaut MJ, Miller GM, Moyers MF, Nelson GA: Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines. In Vivo 2001, 15: 209-216.PubMed Gridley DS, Pecaut MJ, Miller GM, Moyers MF, Nelson GA: Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines. In Vivo 2001, 15: 209-216.PubMed
27.
go back to reference Weiss JF, Landauer MR: History and development of radiation-protective agents. Int J Radiat Biol 2009, 85: 539-573. 10.1080/09553000902985144CrossRefPubMed Weiss JF, Landauer MR: History and development of radiation-protective agents. Int J Radiat Biol 2009, 85: 539-573. 10.1080/09553000902985144CrossRefPubMed
28.
go back to reference Domen J, Gandy KL, Weissman IL: Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 1998, 91: 2272-2282.PubMed Domen J, Gandy KL, Weissman IL: Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 1998, 91: 2272-2282.PubMed
29.
go back to reference Xiang J, Chao DT, Korsmeyer SJ: BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996, 93: 14559-14563. 10.1073/pnas.93.25.14559PubMedCentralCrossRefPubMed Xiang J, Chao DT, Korsmeyer SJ: BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996, 93: 14559-14563. 10.1073/pnas.93.25.14559PubMedCentralCrossRefPubMed
Metadata
Title
Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response
Authors
Shubhankar Suman
Manoj Maniar
Albert J Fornace Jr
Kamal Datta
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2012
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-7-6

Other articles of this Issue 1/2012

Radiation Oncology 1/2012 Go to the issue