Skip to main content
Top
Published in: Journal of Digital Imaging 3/2013

01-06-2013

Adaptive Segmentation of Vertebral Bodies from Sagittal MR Images Based on Local Spatial Information and Gaussian Weighted Chi-Square Distance

Authors: Qian Zheng, Zhentai Lu, Qianjin Feng, Jianhua Ma, Wei Yang, Chao Chen, Wufan Chen

Published in: Journal of Imaging Informatics in Medicine | Issue 3/2013

Login to get access

Abstract

We present a novel method for the automatic segmentation of the vertebral bodies from 2D sagittal magnetic resonance (MR) images of the spine. First, a new affinity matrix is constructed by incorporating neighboring information, which local intensity is considered to depict the image and overcome the noise effectively. Second, the Gaussian kernel function is to weight chi-square distance based on the neighboring information, which the vital spatial structure of the image is introduced to improve the accuracy of the segmentation task. Third, an adaptive local scaling parameter is utilized to facilitate the image segmentation and avoid the optimal configuration of controlling parameter manually. The encouraging results on the spinal MR images demonstrate the advantage of the proposed method over other methods in terms of both efficiency and robustness.
Literature
1.
go back to reference Gath I, Geva AB: Unsupervised optimal fuzzy clustering. IEEE Transportation Pattern Analytical Machine Intelligence 11:773–781, 1989CrossRef Gath I, Geva AB: Unsupervised optimal fuzzy clustering. IEEE Transportation Pattern Analytical Machine Intelligence 11:773–781, 1989CrossRef
2.
go back to reference Schillo C, Herrmann G, Ackermann F, et al: Statistical classification and segmentation of biomolecular surfaces. Proceedings International Conference Image Processing 3(3):560–563, 1995CrossRef Schillo C, Herrmann G, Ackermann F, et al: Statistical classification and segmentation of biomolecular surfaces. Proceedings International Conference Image Processing 3(3):560–563, 1995CrossRef
3.
go back to reference Kass M, Witkin A, Terzopoulos D: Snakes: Active contour models. International J Computer Vision 5:321–331, 1988 Kass M, Witkin A, Terzopoulos D: Snakes: Active contour models. International J Computer Vision 5:321–331, 1988
4.
go back to reference Caselles V, Kimmel R, Sapiro G: Geodesic active contours. International J Computer Vision 22(1):61–79, 1997CrossRef Caselles V, Kimmel R, Sapiro G: Geodesic active contours. International J Computer Vision 22(1):61–79, 1997CrossRef
5.
go back to reference Ronfard R: Region-based strategies for active contour models. International J Computer Vision 46:223–247, 2002CrossRef Ronfard R: Region-based strategies for active contour models. International J Computer Vision 46:223–247, 2002CrossRef
6.
go back to reference Paragios N, Deriche R: Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Transaction Pattern Analysis Machine Intelligence 22:1–15, 2000CrossRef Paragios N, Deriche R: Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Transaction Pattern Analysis Machine Intelligence 22:1–15, 2000CrossRef
7.
go back to reference Chan T, Vese L: Active contour without edges. IEEE Transaction Image Processing 10(2):266–277, 2001CrossRef Chan T, Vese L: Active contour without edges. IEEE Transaction Image Processing 10(2):266–277, 2001CrossRef
8.
go back to reference Cootes TF, Taylor CJ, Cooper DH, Graham J: Active shape models—their training and application. Computer Vision Image Understanding (61) 38–59, 1995 Cootes TF, Taylor CJ, Cooper DH, Graham J: Active shape models—their training and application. Computer Vision Image Understanding (61) 38–59, 1995
9.
go back to reference Mitchell SC, Bosch JG, Lelieveldt BP, et al: 3-d active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Transport Medicine Imaging 21(9):1167–1178, 2002CrossRef Mitchell SC, Bosch JG, Lelieveldt BP, et al: 3-d active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Transport Medicine Imaging 21(9):1167–1178, 2002CrossRef
10.
go back to reference Dunn JC: A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster. J Cybernet 3(3):32–57, 1974 Dunn JC: A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster. J Cybernet 3(3):32–57, 1974
11.
go back to reference Bezdek JC: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic, Norwell, 1981CrossRef Bezdek JC: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic, Norwell, 1981CrossRef
12.
go back to reference J, Gray RM: Image Segmentation and Compression Using Hidden Markov Models (Monograph). Norwell: Kluwer Academic, 2000 J, Gray RM: Image Segmentation and Compression Using Hidden Markov Models (Monograph). Norwell: Kluwer Academic, 2000
13.
go back to reference Greig DM, Porteous BT, Seheult AH: Exact maximum a posteriori estimation for binary images. J Royal Statistical Society Series B 51:271–279, 1989 Greig DM, Porteous BT, Seheult AH: Exact maximum a posteriori estimation for binary images. J Royal Statistical Society Series B 51:271–279, 1989
14.
go back to reference Wu Z, Leahy R: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Transactions Pattern Analysis Machine Intelligence 15(11):1101–1113, 1993CrossRef Wu Z, Leahy R: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Transactions Pattern Analysis Machine Intelligence 15(11):1101–1113, 1993CrossRef
15.
go back to reference Shi J, Malik J: Normalized cuts and image segmentation. IEEE Transactions Pattern Analysis Machine Intelligence 22(8):888–905, 2000CrossRef Shi J, Malik J: Normalized cuts and image segmentation. IEEE Transactions Pattern Analysis Machine Intelligence 22(8):888–905, 2000CrossRef
16.
go back to reference Angayarkanni P: MRI mammogram image segmentation using ncut method and genetic algorithm with partial filters. IJCSI International J Computer Science Issues 8(1):455–459, 2011 Angayarkanni P: MRI mammogram image segmentation using ncut method and genetic algorithm with partial filters. IJCSI International J Computer Science Issues 8(1):455–459, 2011
17.
go back to reference Gamio J, Belongie S, Majumdar S: Normalized cuts in 3D for spinal MRI segmentation. IEEE Transactions Medical Imaging 23(1):36–44, 2004CrossRef Gamio J, Belongie S, Majumdar S: Normalized cuts in 3D for spinal MRI segmentation. IEEE Transactions Medical Imaging 23(1):36–44, 2004CrossRef
18.
go back to reference Malik J, Belongie S, Leung T, et al: Contour and texture analysis for image segmentation. International J Computer Vision 43(1):7–27, 2001CrossRef Malik J, Belongie S, Leung T, et al: Contour and texture analysis for image segmentation. International J Computer Vision 43(1):7–27, 2001CrossRef
19.
go back to reference Ng A, Jordan M, Weiss Y: On spectral clustering: analysis and an algorithm. Advances Neural Information Processing Systems (NIPS) 849–856, 2001 Ng A, Jordan M, Weiss Y: On spectral clustering: analysis and an algorithm. Advances Neural Information Processing Systems (NIPS) 849–856, 2001
20.
go back to reference Cour T, Benezit F, Shi J: Spectral segmentation with multiscale graph decomposition. IEEE Conference Computer Vision Pattern Recognition 2(2):1124–1131, 2005 Cour T, Benezit F, Shi J: Spectral segmentation with multiscale graph decomposition. IEEE Conference Computer Vision Pattern Recognition 2(2):1124–1131, 2005
21.
go back to reference Zelnik ML, Perona P: Self-tuning spectral clustering. Advances Neural Information Processing Systems (NIPS) 1601–1608, 2004 Zelnik ML, Perona P: Self-tuning spectral clustering. Advances Neural Information Processing Systems (NIPS) 1601–1608, 2004
22.
go back to reference Hagen L, Kahng A: New spectral methods for ratio cut partitioning and clustering. IEEE Transactions Computer-Aided Design 11(9):1074–1085, 1992CrossRef Hagen L, Kahng A: New spectral methods for ratio cut partitioning and clustering. IEEE Transactions Computer-Aided Design 11(9):1074–1085, 1992CrossRef
23.
go back to reference Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Transportation Pattern Analytical Machine Intelligence 12:629–639, 1990CrossRef Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Transportation Pattern Analytical Machine Intelligence 12:629–639, 1990CrossRef
24.
go back to reference Perona P, Shiota T, Malik J: Anisotropic diffusion. Geometry-Driven Diffusion Computer Vision 1:73–92, 1994CrossRef Perona P, Shiota T, Malik J: Anisotropic diffusion. Geometry-Driven Diffusion Computer Vision 1:73–92, 1994CrossRef
25.
go back to reference Mayer A, Greenspan H: An adaptive mean-shift framework for MRI brain segmentation. IEEE Transactions Image Processing 28(8):1238–1250, 2009CrossRef Mayer A, Greenspan H: An adaptive mean-shift framework for MRI brain segmentation. IEEE Transactions Image Processing 28(8):1238–1250, 2009CrossRef
26.
go back to reference Sezgin M, Sankur B: Survey over image thresholding techniques and quantitative performance evaluation. J Electronic Imaging 13(1):146–165, 2004CrossRef Sezgin M, Sankur B: Survey over image thresholding techniques and quantitative performance evaluation. J Electronic Imaging 13(1):146–165, 2004CrossRef
27.
go back to reference Alt H, Guibas LJ: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack JR, Urrutia J Eds. Handbook of Computational Geometry. Amsterdam: Elsevier Science, 2000, pp 121–153 Alt H, Guibas LJ: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack JR, Urrutia J Eds. Handbook of Computational Geometry. Amsterdam: Elsevier Science, 2000, pp 121–153
Metadata
Title
Adaptive Segmentation of Vertebral Bodies from Sagittal MR Images Based on Local Spatial Information and Gaussian Weighted Chi-Square Distance
Authors
Qian Zheng
Zhentai Lu
Qianjin Feng
Jianhua Ma
Wei Yang
Chao Chen
Wufan Chen
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
Journal of Imaging Informatics in Medicine / Issue 3/2013
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-012-9552-9

Other articles of this Issue 3/2013

Journal of Digital Imaging 3/2013 Go to the issue