Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

01-12-2020 | Acute Respiratory Distress-Syndrome | Research article

Protective effect of Chrysanthemum morifolium Ramat. ethanol extract on lipopolysaccharide induced acute lung injury in mice

Authors: Gang Liu, Qingxiu Zheng, Kunlei Pan, Xiaoxiao Xu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

To evaluate the effect of Chrysanthemum morifolium Ramat. ethanol extract (CEE) on lipopolysaccharide induced acute lung injury in mice.

Methods

The ninety C57BL/6 J male mice randomly divided into five groups: control, model and CEE (50, 100, 200 mg/kg) groups for 7 days oral administration. At the last administration, all mice except control were intratracheal instilled with lipopolysaccharide (LPS, 3 mg/kg) for establish the acute lung injury. Then lung histopathologic, lung wet/dry weight, white blood cells, lymphocytes, neutrophils were detected. The pro-inflammation cytokine tumor necrosis factor-α (TNF-α), interleukin (IL)-6, anti-inflammatory cytokine transforming growth factor-β1 (TGF-β1), IL-10 and the marker of antioxides ability total-antioxidant capacity (T-AOC), malondialdehyde (MDA) in lung tissue were measured.

Results

The result showed that CEE could improve lung histopathological injury, reduce the ratio of wet/dry lung weight and lung index, inhibit the increased number of white blood cells, lymphocytes and neutrophils, and reduce the increased levels of TNF-α and IL-6. While CEE also significantly increased the levels of TGF-β1 and IL-10. Furthermore, CEE also markedly increased the activity of T-AOC, and decreased the contents of MDA with a dose-dependent manner.

Conclusions

The study exhibited that CEE has a potential protective effect on lipopolysaccharide induced acute lung injury in mice, the action mechanism of CEE may through balance of the pro-inflammatory and anti-inflammatory factors, and the oxygen free radicals inhibition.
Literature
1.
go back to reference Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–50.CrossRef Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–50.CrossRef
2.
go back to reference Rebetz J, Semple JW, Kapur R. The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury. Transfus Med Hemother. 2018;45(5):290–8.CrossRef Rebetz J, Semple JW, Kapur R. The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury. Transfus Med Hemother. 2018;45(5):290–8.CrossRef
3.
go back to reference Dries DJ. ARDS from syndrome to disease-treatment strategies. Air Med J. 2019;38(2):64–7.CrossRef Dries DJ. ARDS from syndrome to disease-treatment strategies. Air Med J. 2019;38(2):64–7.CrossRef
4.
go back to reference Chen M, Lu J, Chen Q, Cheng L, Geng Y, Jiang H, Wang X. Statin in the treatment of ALI/ARDS: a systematic review and meta-analysis based on international databases. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(1):51–6.PubMed Chen M, Lu J, Chen Q, Cheng L, Geng Y, Jiang H, Wang X. Statin in the treatment of ALI/ARDS: a systematic review and meta-analysis based on international databases. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(1):51–6.PubMed
5.
go back to reference Prasertsan P, Anuntaseree W, Ruangnapa K, Saelim K, Geater A. Severity and mortality predictors of pediatric acute respiratory distress syndrome according to the pediatric acute lung injury consensus conference definition. Pediatric Crit Care Med. 2019;20(10):e464–72.CrossRef Prasertsan P, Anuntaseree W, Ruangnapa K, Saelim K, Geater A. Severity and mortality predictors of pediatric acute respiratory distress syndrome according to the pediatric acute lung injury consensus conference definition. Pediatric Crit Care Med. 2019;20(10):e464–72.CrossRef
6.
go back to reference Oakley C, Koh M, Baldi R, Soni S, O'Dea K, Takata M, Wilson M. Ventilation following established ARDS: a preclinical model framework to improve predictive power. Thorax. 2019;74(12):1120–9.CrossRef Oakley C, Koh M, Baldi R, Soni S, O'Dea K, Takata M, Wilson M. Ventilation following established ARDS: a preclinical model framework to improve predictive power. Thorax. 2019;74(12):1120–9.CrossRef
7.
go back to reference Li Q, Sun M, Wan Z, Liang J, Betti M, Hrynets Y, Xue X, Wu L, Wang K. Bee pollen extracts modulate serum metabolism in lipopolysaccharide-induced acute lung injury mice with anti-inflammatory effects. J Agric Food Chem. 2019;67(28):7855–68.CrossRef Li Q, Sun M, Wan Z, Liang J, Betti M, Hrynets Y, Xue X, Wu L, Wang K. Bee pollen extracts modulate serum metabolism in lipopolysaccharide-induced acute lung injury mice with anti-inflammatory effects. J Agric Food Chem. 2019;67(28):7855–68.CrossRef
8.
go back to reference Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23(1):99.CrossRef Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23(1):99.CrossRef
9.
go back to reference Siddiqui MT, Litts JK, Cheney DM, Kuhn MA, Nativ-Zeltzer N, Belafsky PC. The effect of aspirated barium sulfate, iodixanol, and diatrizoic acid on survival and lung injury in a lagomorph model. Laryngoscope. 2017;127(5):E148–52.CrossRef Siddiqui MT, Litts JK, Cheney DM, Kuhn MA, Nativ-Zeltzer N, Belafsky PC. The effect of aspirated barium sulfate, iodixanol, and diatrizoic acid on survival and lung injury in a lagomorph model. Laryngoscope. 2017;127(5):E148–52.CrossRef
10.
go back to reference McIntyre LA, Moher D, Fergusson DA, Sullivan KJ, Mei SH, Lalu M, Marshall J, McLeod M, Griffin G, Grimshaw J, et al. Efficacy of Mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: a systematic review. PLoS One. 2016;11(1):e0147170.CrossRef McIntyre LA, Moher D, Fergusson DA, Sullivan KJ, Mei SH, Lalu M, Marshall J, McLeod M, Griffin G, Grimshaw J, et al. Efficacy of Mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: a systematic review. PLoS One. 2016;11(1):e0147170.CrossRef
11.
go back to reference Lalu MM, Moher D, Marshall J, Fergusson D, Mei SH, Macleod M, Griffin G, Turgeon AF, Rudnicki M, Fishman J, et al. Efficacy and safety of mesenchymal stromal cells in preclinical models of acute lung injury: a systematic review protocol. Syst Rev. 2014;3:48.CrossRef Lalu MM, Moher D, Marshall J, Fergusson D, Mei SH, Macleod M, Griffin G, Turgeon AF, Rudnicki M, Fishman J, et al. Efficacy and safety of mesenchymal stromal cells in preclinical models of acute lung injury: a systematic review protocol. Syst Rev. 2014;3:48.CrossRef
12.
go back to reference Nabeshima T, Doi M, Hosokawa M. Comparative analysis of Chrysanthemum stunt viroid accumulation and movement in two Chrysanthemum (Chrysanthemum morifolium) cultivars with differential susceptibility to the viroid infection. Front Plant Sci. 2017;8:1940.CrossRef Nabeshima T, Doi M, Hosokawa M. Comparative analysis of Chrysanthemum stunt viroid accumulation and movement in two Chrysanthemum (Chrysanthemum morifolium) cultivars with differential susceptibility to the viroid infection. Front Plant Sci. 2017;8:1940.CrossRef
13.
go back to reference Nabeshima T, Matsushita Y, Hosokawa M. Chrysanthemum stunt viroid resistance in chrysanthemum. Viruses. 2018;10(12).719. Nabeshima T, Matsushita Y, Hosokawa M. Chrysanthemum stunt viroid resistance in chrysanthemum. Viruses. 2018;10(12).719.
14.
go back to reference Ohmiya A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed Sci. 2018;68(1):119–27.CrossRef Ohmiya A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed Sci. 2018;68(1):119–27.CrossRef
15.
go back to reference Lu GP, Wang YX. Drug management of pediatric acute respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(9):697–700.PubMed Lu GP, Wang YX. Drug management of pediatric acute respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(9):697–700.PubMed
16.
go back to reference Song XY, Li YD, Shi YP, Jin L, Chen J. Quality control of traditional Chinese medicines: a review. Chin J Nat Med. 2013;11(6):596–607.CrossRef Song XY, Li YD, Shi YP, Jin L, Chen J. Quality control of traditional Chinese medicines: a review. Chin J Nat Med. 2013;11(6):596–607.CrossRef
17.
go back to reference Cho WK, Jo Y, Jo KM, Kim KH. A current overview of two viroids that infect chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid. Viruses. 2013;5(4):1099–113.CrossRef Cho WK, Jo Y, Jo KM, Kim KH. A current overview of two viroids that infect chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid. Viruses. 2013;5(4):1099–113.CrossRef
18.
go back to reference Li Y, Yang P, Luo Y, Gao B, Sun J, Lu W, Liu J, Chen P, Zhang Y, Yu LL. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019;286:8–16.CrossRef Li Y, Yang P, Luo Y, Gao B, Sun J, Lu W, Liu J, Chen P, Zhang Y, Yu LL. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019;286:8–16.CrossRef
19.
go back to reference Yang L, Nuerbiye A, Cheng P, Wang JH, Li H. Analysis of Floral Volatile Components and Antioxidant Activity of Different Varieties of Chrysanthemum morifolium. Molecules. 2017;22(10):1790.CrossRef Yang L, Nuerbiye A, Cheng P, Wang JH, Li H. Analysis of Floral Volatile Components and Antioxidant Activity of Different Varieties of Chrysanthemum morifolium. Molecules. 2017;22(10):1790.CrossRef
20.
go back to reference Matsuda K. Pyrethrin biosynthesis and its regulation in Chrysanthemum cinerariaefolium. Top Curr Chem. 2012;314:73–81.CrossRef Matsuda K. Pyrethrin biosynthesis and its regulation in Chrysanthemum cinerariaefolium. Top Curr Chem. 2012;314:73–81.CrossRef
21.
go back to reference Wang C. Advances in the study on chemical constituents of Chrysanthemum morifolium Ramat. Zhong Yao Cai. 2004;27(3):224–6.PubMed Wang C. Advances in the study on chemical constituents of Chrysanthemum morifolium Ramat. Zhong Yao Cai. 2004;27(3):224–6.PubMed
22.
go back to reference Hitmi A, Coudret A, Barthomeuf C. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol Biol. 2000;35(5):317–37.CrossRef Hitmi A, Coudret A, Barthomeuf C. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol Biol. 2000;35(5):317–37.CrossRef
23.
go back to reference Akihisa T, Franzblau SG, Ukiya M, Okuda H, Zhang F, Yasukawa K, Suzuki T, Kimura Y. Antitubercular activity of triterpenoids from Asteraceae flowers. Biol Pharm Bull. 2005;28(1):158–60.CrossRef Akihisa T, Franzblau SG, Ukiya M, Okuda H, Zhang F, Yasukawa K, Suzuki T, Kimura Y. Antitubercular activity of triterpenoids from Asteraceae flowers. Biol Pharm Bull. 2005;28(1):158–60.CrossRef
24.
go back to reference Ukiya M, Akihisa T, Tokuda H, Suzuki H, Mukainaka T, Ichiishi E, Yasukawa K, Kasahara Y, Nishino H. Constituents of Compositae plants III. Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible chrysanthemum flowers. Cancer Lett. 2002;177(1):7–12.CrossRef Ukiya M, Akihisa T, Tokuda H, Suzuki H, Mukainaka T, Ichiishi E, Yasukawa K, Kasahara Y, Nishino H. Constituents of Compositae plants III. Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible chrysanthemum flowers. Cancer Lett. 2002;177(1):7–12.CrossRef
25.
go back to reference Dong Y, Zhang L, Jiang Y, Dai J, Tang L, Liu G. Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp Anim. 2019;68(4):559–68.CrossRef Dong Y, Zhang L, Jiang Y, Dai J, Tang L, Liu G. Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp Anim. 2019;68(4):559–68.CrossRef
26.
go back to reference Smith P, Jeffers LA, Koval M. Effects of different routes of endotoxin injury on barrier function in alcoholic lung syndrome. Alcohol. 2018;80:81–9.CrossRef Smith P, Jeffers LA, Koval M. Effects of different routes of endotoxin injury on barrier function in alcoholic lung syndrome. Alcohol. 2018;80:81–9.CrossRef
27.
go back to reference Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol. 2015;209:52–8.CrossRef Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol. 2015;209:52–8.CrossRef
28.
go back to reference Stormann P, Lustenberger T, Relja B, Marzi I, Wutzler S. Role of biomarkers in acute traumatic lung injury. Injury. 2017;48(11):2400–6.CrossRef Stormann P, Lustenberger T, Relja B, Marzi I, Wutzler S. Role of biomarkers in acute traumatic lung injury. Injury. 2017;48(11):2400–6.CrossRef
29.
go back to reference Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers against pro- and anti-inflammatory cytokines: a review. Inflammation. 2017;40(1):340–9.CrossRef Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers against pro- and anti-inflammatory cytokines: a review. Inflammation. 2017;40(1):340–9.CrossRef
30.
go back to reference Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, He W, Zhang R, Shen L. High-mobility group box 1 (HMGB1) and autophagy in acute lung injury (ALI): a review. Med Sci Monit. 2019;25:1828–37.CrossRef Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, He W, Zhang R, Shen L. High-mobility group box 1 (HMGB1) and autophagy in acute lung injury (ALI): a review. Med Sci Monit. 2019;25:1828–37.CrossRef
Metadata
Title
Protective effect of Chrysanthemum morifolium Ramat. ethanol extract on lipopolysaccharide induced acute lung injury in mice
Authors
Gang Liu
Qingxiu Zheng
Kunlei Pan
Xiaoxiao Xu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-03017-z

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue