Skip to main content
Top
Published in: Critical Care 1/2021

01-12-2021 | Acute Respiratory Distress-Syndrome | Research

Bedside estimates of dead space using end-tidal CO2 are independently associated with mortality in ARDS

Authors: Paola Lecompte-Osorio, Steven D. Pearson, Cole H. Pieroni, Matthew R. Stutz, Anne S. Pohlman, Julie Lin, Jesse B. Hall, Yu M. Htwe, Patrick G. Belvitch, Steven M. Dudek, Krysta Wolfe, Bhakti K. Patel, John P. Kress

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Purpose

In acute respiratory distress syndrome (ARDS), dead space fraction has been independently associated with mortality. We hypothesized that early measurement of the difference between arterial and end-tidal CO2 (arterial-ET difference), a surrogate for dead space fraction, would predict mortality in mechanically ventilated patients with ARDS.

Methods

We performed two separate exploratory analyses. We first used publicly available databases from the ALTA, EDEN, and OMEGA ARDS Network trials (N = 124) as a derivation cohort to test our hypothesis. We then performed a separate retrospective analysis of patients with ARDS using University of Chicago patients (N = 302) as a validation cohort.

Results

The ARDS Network derivation cohort demonstrated arterial-ET difference, vasopressor requirement, age, and APACHE III to be associated with mortality by univariable analysis. By multivariable analysis, only the arterial-ET difference remained significant (P = 0.047). In a separate analysis, the modified Enghoff equation ((PaCO2–PETCO2)/PaCO2) was used in place of the arterial-ET difference and did not alter the results. The University of Chicago cohort found arterial-ET difference, age, ventilator mode, vasopressor requirement, and APACHE II to be associated with mortality in a univariate analysis. By multivariable analysis, the arterial-ET difference continued to be predictive of mortality (P = 0.031). In the validation cohort, substitution of the arterial-ET difference for the modified Enghoff equation showed similar results.

Conclusion

Arterial to end-tidal CO2 (ETCO2) difference is an independent predictor of mortality in patients with ARDS.
Literature
1.
go back to reference Rezoagli E, Fumagalli R, Bellani G. Definition and epidemiology of acute respiratory distress syndrome. Ann Transl Med. 2017;5(14):282.CrossRef Rezoagli E, Fumagalli R, Bellani G. Definition and epidemiology of acute respiratory distress syndrome. Ann Transl Med. 2017;5(14):282.CrossRef
2.
go back to reference Network ARDS, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Network ARDS, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
3.
go back to reference Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.CrossRef Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.CrossRef
4.
go back to reference Force ADT, Ranieri V, Rubenfeld G, Thompson B, Ferguson N, Caldwell E. Acute respiratory distress syndrome. JAMA. 2012;307(23):2526–33. Force ADT, Ranieri V, Rubenfeld G, Thompson B, Ferguson N, Caldwell E. Acute respiratory distress syndrome. JAMA. 2012;307(23):2526–33.
5.
go back to reference Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet J-F, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.CrossRef Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet J-F, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.CrossRef
6.
go back to reference Siobal MS. Monitoring exhaled carbon dioxide. Respir Care. 2016;61(10):1397–416.CrossRef Siobal MS. Monitoring exhaled carbon dioxide. Respir Care. 2016;61(10):1397–416.CrossRef
7.
go back to reference Shetty AL, Lai KH, Byth K. The CO2 GAP Project–CO2 GAP as a prognostic tool in emergency departments. Emerg Med Australas. 2010;22(6):524–31.CrossRef Shetty AL, Lai KH, Byth K. The CO2 GAP Project–CO2 GAP as a prognostic tool in emergency departments. Emerg Med Australas. 2010;22(6):524–31.CrossRef
8.
go back to reference Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(8):964–84.CrossRef Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(8):964–84.CrossRef
9.
go back to reference Ferluga M, Lucangelo U, Blanch L. Dead space in acute respiratory distress syndrome. Ann Transl Med. 2018;6(19):388.CrossRef Ferluga M, Lucangelo U, Blanch L. Dead space in acute respiratory distress syndrome. Ann Transl Med. 2018;6(19):388.CrossRef
10.
go back to reference Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 2003;29(9):1426–34. Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 2003;29(9):1426–34.
11.
go back to reference Rice TW, Wheeler AP, Thompson BT, DeBoisblanc BP, Steingrub J, Rock P. Enteral omega-3 fatty acid, γ-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–81.CrossRef Rice TW, Wheeler AP, Thompson BT, DeBoisblanc BP, Steingrub J, Rock P. Enteral omega-3 fatty acid, γ-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–81.CrossRef
12.
go back to reference National Heart L, Network BIARDSCT. Randomized, placebo-controlled clinical trial of an aerosolized β2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011;184(5):561–8.CrossRef National Heart L, Network BIARDSCT. Randomized, placebo-controlled clinical trial of an aerosolized β2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011;184(5):561–8.CrossRef
13.
go back to reference National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Rice TW, Wheeler AP, Thompson BT, Steingrub J, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803.CrossRef National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Rice TW, Wheeler AP, Thompson BT, Steingrub J, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803.CrossRef
14.
go back to reference Poorolajal J, Cheraghi Z, Irani AD, Rezaeian S. Quality of cohort studies reporting post the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Epidemiol Health. 2011;33:e2011005.CrossRef Poorolajal J, Cheraghi Z, Irani AD, Rezaeian S. Quality of cohort studies reporting post the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Epidemiol Health. 2011;33:e2011005.CrossRef
15.
go back to reference Liu X. Applied ordinal logistic regression using Stata: from single-level to multilevel modeling. Thousand Oaks: Sage Publications; 2015. Liu X. Applied ordinal logistic regression using Stata: from single-level to multilevel modeling. Thousand Oaks: Sage Publications; 2015.
16.
go back to reference Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):1–22.CrossRef Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):1–22.CrossRef
17.
go back to reference Seeley E, McAuley DF, Eisner M, Miletin M, Matthay MA, Kallet RH. Predictors of mortality in acute lung injury during the era of lung protective ventilation. Thorax. 2008;63(11):994–8.CrossRef Seeley E, McAuley DF, Eisner M, Miletin M, Matthay MA, Kallet RH. Predictors of mortality in acute lung injury during the era of lung protective ventilation. Thorax. 2008;63(11):994–8.CrossRef
18.
go back to reference Bohr C. Ueber die lungenathmung. Skand Arch Physiol. 1891;2(236):68. Bohr C. Ueber die lungenathmung. Skand Arch Physiol. 1891;2(236):68.
19.
go back to reference Severinghaus J, Stupfel M. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10(3):335–48.CrossRef Severinghaus J, Stupfel M. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10(3):335–48.CrossRef
20.
go back to reference Mosing M, Böhm SH, Rasis A, Hoosgood G, Auer U, Tusman G, et al. Physiologic factors influencing the arterial-to-end-tidal CO2 difference and the alveolar dead space fraction in spontaneously breathing anesthetised horses. Front Vet Sci. 2018;5:58.CrossRef Mosing M, Böhm SH, Rasis A, Hoosgood G, Auer U, Tusman G, et al. Physiologic factors influencing the arterial-to-end-tidal CO2 difference and the alveolar dead space fraction in spontaneously breathing anesthetised horses. Front Vet Sci. 2018;5:58.CrossRef
21.
go back to reference Meyer RE, Short CE. Arterial to end-tidal CO2 tension and alveolar dead space in halothane-or isoflurane-anesthetized ponies. Am J Vet Res. 1985;46(3):597–9.PubMed Meyer RE, Short CE. Arterial to end-tidal CO2 tension and alveolar dead space in halothane-or isoflurane-anesthetized ponies. Am J Vet Res. 1985;46(3):597–9.PubMed
22.
go back to reference Nunn J, Hill D. Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man. J Appl Physiol. 1960;15(3):383–9.CrossRef Nunn J, Hill D. Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man. J Appl Physiol. 1960;15(3):383–9.CrossRef
23.
go back to reference Shetty A, Sparenberg S, Adams K, Selvedran S, Tang B, Hanna K, et al. Arterial to end-tidal carbon dioxide tension difference (CO2 gap) as a prognostic marker for adverse outcomes in emergency department patients presenting with suspected sepsis. Emerg Med Australas. 2018;30(6):794–801.CrossRef Shetty A, Sparenberg S, Adams K, Selvedran S, Tang B, Hanna K, et al. Arterial to end-tidal carbon dioxide tension difference (CO2 gap) as a prognostic marker for adverse outcomes in emergency department patients presenting with suspected sepsis. Emerg Med Australas. 2018;30(6):794–801.CrossRef
24.
go back to reference Yamanaka MK, Sue DY. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92(5):832–5.CrossRef Yamanaka MK, Sue DY. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92(5):832–5.CrossRef
25.
go back to reference Tyburski JG, Collinge JD, Wilson RF, Carlin AM, Albaran RG, Steffes CP. End-tidal CO2-derived values during emergency trauma surgery correlated with outcome: a prospective study. J Trauma Acute Care Surg. 2002;53(4):738–43.CrossRef Tyburski JG, Collinge JD, Wilson RF, Carlin AM, Albaran RG, Steffes CP. End-tidal CO2-derived values during emergency trauma surgery correlated with outcome: a prospective study. J Trauma Acute Care Surg. 2002;53(4):738–43.CrossRef
Metadata
Title
Bedside estimates of dead space using end-tidal CO2 are independently associated with mortality in ARDS
Authors
Paola Lecompte-Osorio
Steven D. Pearson
Cole H. Pieroni
Matthew R. Stutz
Anne S. Pohlman
Julie Lin
Jesse B. Hall
Yu M. Htwe
Patrick G. Belvitch
Steven M. Dudek
Krysta Wolfe
Bhakti K. Patel
John P. Kress
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03751-x

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue