Skip to main content
Top
Published in: Inflammation 6/2021

01-12-2021 | Acute Respiratory Distress-Syndrome | Original Article

Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats

Authors: Nursel Dikmen, Mustafa Cellat, Muhammed Etyemez, Cafer Tayer İşler, Ahmet Uyar, Tuba Aydın, Mehmet Güvenç

Published in: Inflammation | Issue 6/2021

Login to get access

Abstract

Acute lung injury (ALI) is one of the most common causes of death in diseases with septic shock. Oleuropein, one of the important components of olive leaf, has antioxidant and anti-inflammatory effects. The objective of this study was to investigate the effects of oleuropein on lipopolysaccharide (LPS)-induced ALI in rats. Oleuropein was administered to rats at a dose of 200 mg/kg for 20 days and LPS was given through intratracheal administration to induce ALI. The study was terminated after 12 h. The results showed that in the group treated with oleuropein, inflammatory cytokines and oxidative stress decreased in serum, bronchoalveolar lavage fluid (BALF), and lung tissue, and there were significant improvements in the picture of acute interstitial pneumonia (AIP) caused by LPS in histopathological examination. Based on the findings of the present study, oleuropein showed protective effects against LPS-induced ALI.
Literature
1.
go back to reference Parvathaneni, K., S. Belani, D. Leung, C.J.L. Newth, and R.G. Khemani. 2017. Evaluating the performance of the pediatric acute lung injury consensus conference definition of acute respiratory distress syndrome. Pediatric Critical Care Medicine 18 (1): 17–25.PubMedCrossRef Parvathaneni, K., S. Belani, D. Leung, C.J.L. Newth, and R.G. Khemani. 2017. Evaluating the performance of the pediatric acute lung injury consensus conference definition of acute respiratory distress syndrome. Pediatric Critical Care Medicine 18 (1): 17–25.PubMedCrossRef
2.
go back to reference Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.PubMedCrossRef Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.PubMedCrossRef
3.
go back to reference Toy, P., et al. 2012. Transfusion-related acute lung injury: incidence and risk factors. Blood, The Journal of the American Society of Hematology 119 (7): 1757–1767. Toy, P., et al. 2012. Transfusion-related acute lung injury: incidence and risk factors. Blood, The Journal of the American Society of Hematology 119 (7): 1757–1767.
4.
go back to reference Gao, J., Q. Liu, J. Li, C. Hu, W. Zhao, W. Ma, M. Yao, and L. Xing. 2020. Fibroblast growth factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury. International Immunopharmacology 80: 106219.PubMedCrossRef Gao, J., Q. Liu, J. Li, C. Hu, W. Zhao, W. Ma, M. Yao, and L. Xing. 2020. Fibroblast growth factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury. International Immunopharmacology 80: 106219.PubMedCrossRef
5.
go back to reference Abraham, E. 2000. Coagulation abnormalities in acute lung injury and sepsis. American Journal of Respiratory Cell and Molecular Biology 22 (4): 401–404.PubMedCrossRef Abraham, E. 2000. Coagulation abnormalities in acute lung injury and sepsis. American Journal of Respiratory Cell and Molecular Biology 22 (4): 401–404.PubMedCrossRef
6.
go back to reference Trivedi, J., J. Shaikh, N. Chavan, D. Thorve, B. Chaudhary, A. Karade, S. Gupta, A. Patel, and S. Bhagwat. 2020. Pretreatment of nafithromycin attenuates inflammatory response in murine lipopolysaccharide induced acute lung injury. Cytokine 129: 155049.PubMedCrossRef Trivedi, J., J. Shaikh, N. Chavan, D. Thorve, B. Chaudhary, A. Karade, S. Gupta, A. Patel, and S. Bhagwat. 2020. Pretreatment of nafithromycin attenuates inflammatory response in murine lipopolysaccharide induced acute lung injury. Cytokine 129: 155049.PubMedCrossRef
7.
go back to reference Xie, K., Y. Yu, Y. Huang, L. Zheng, J. Li, H. Chen, H. Han, L. Hou, G. Gong, and G. Wang. 2012. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 37 (5): 548–555.PubMedCrossRef Xie, K., Y. Yu, Y. Huang, L. Zheng, J. Li, H. Chen, H. Han, L. Hou, G. Gong, and G. Wang. 2012. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 37 (5): 548–555.PubMedCrossRef
8.
go back to reference Zhou, E., Y. Li, Z. Wei, Y. Fu, H. Lei, N. Zhang, Z. Yang, and G. Xie. 2014. Schisantherin A protects lipopolysaccharide-induced acute respiratory distress syndrome in mice through inhibiting NF-κB and MAPKs signaling pathways. International immunopharmacology 22 (1): 133–140.PubMedCrossRef Zhou, E., Y. Li, Z. Wei, Y. Fu, H. Lei, N. Zhang, Z. Yang, and G. Xie. 2014. Schisantherin A protects lipopolysaccharide-induced acute respiratory distress syndrome in mice through inhibiting NF-κB and MAPKs signaling pathways. International immunopharmacology 22 (1): 133–140.PubMedCrossRef
9.
go back to reference Huang, W.-C., C.L. Lai, Y.T. Liang, H.C. Hung, H.C. Liu, and C.J. Liou. 2016. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. International immunopharmacology 40: 98–105.PubMedCrossRef Huang, W.-C., C.L. Lai, Y.T. Liang, H.C. Hung, H.C. Liu, and C.J. Liou. 2016. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. International immunopharmacology 40: 98–105.PubMedCrossRef
10.
go back to reference Jeong, H.-Y., Y.S. Choi, J.K. Lee, B.J. Lee, W.K. Kim, and H. Kang. 2017. Anti-inflammatory activity of citric acid-treated wheat germ extract in lipopolysaccharide-stimulated macrophages. Nutrients 9 (7): 730.PubMedCentralCrossRef Jeong, H.-Y., Y.S. Choi, J.K. Lee, B.J. Lee, W.K. Kim, and H. Kang. 2017. Anti-inflammatory activity of citric acid-treated wheat germ extract in lipopolysaccharide-stimulated macrophages. Nutrients 9 (7): 730.PubMedCentralCrossRef
11.
go back to reference Huang, X., Y. Zeng, Y. Jiang, Y. Qin, W. Luo, S. Xiang, S.R. Sooranna, and L. Pinhu. 2017. Lipopolysaccharide-binding protein downregulates fractalkine through activation of p38 MAPK and NF-κB. Mediators of Inflammation 2017: 1–20. Huang, X., Y. Zeng, Y. Jiang, Y. Qin, W. Luo, S. Xiang, S.R. Sooranna, and L. Pinhu. 2017. Lipopolysaccharide-binding protein downregulates fractalkine through activation of p38 MAPK and NF-κB. Mediators of Inflammation 2017: 120.
13.
go back to reference Fouad, A.A., W.H. Albuali, and I. Jresat. 2016. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology 97 (5-6): 224–232.PubMedCrossRef Fouad, A.A., W.H. Albuali, and I. Jresat. 2016. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology 97 (5-6): 224–232.PubMedCrossRef
14.
go back to reference Ma, X., D. Xu, Y. Ai, G. Ming, and S. Zhao. 2010. Fas inhibition attenuates lipopolysaccharide-induced apoptosis and cytokine release of rat type II alveolar epithelial cells. Molecular biology reports 37 (7): 3051–3056.PubMedCrossRef Ma, X., D. Xu, Y. Ai, G. Ming, and S. Zhao. 2010. Fas inhibition attenuates lipopolysaccharide-induced apoptosis and cytokine release of rat type II alveolar epithelial cells. Molecular biology reports 37 (7): 3051–3056.PubMedCrossRef
15.
go back to reference Wang, L., et al. 2017. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways. Brazilian Journal of Medical and Biological Research: 50(3). Wang, L., et al. 2017. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways. Brazilian Journal of Medical and Biological Research: 50(3).
16.
go back to reference Tuleta, I., F. Stöckigt, U.R. Juergens, C. Pizarro, J.W. Schrickel, G. Kristiansen, G. Nickenig, and D. Skowasch. 2016. Intermittent hypoxia contributes to the lung damage by increased oxidative stress, inflammation, and disbalance in protease/antiprotease system. Lung 194 (6): 1015–1020.PubMedCrossRef Tuleta, I., F. Stöckigt, U.R. Juergens, C. Pizarro, J.W. Schrickel, G. Kristiansen, G. Nickenig, and D. Skowasch. 2016. Intermittent hypoxia contributes to the lung damage by increased oxidative stress, inflammation, and disbalance in protease/antiprotease system. Lung 194 (6): 1015–1020.PubMedCrossRef
17.
go back to reference Chen, C.-M., Y.T. Tung, C.H. Wei, P.Y. Lee, and W. Chen. 2020. Anti-inflammatory and reactive oxygen species suppression through aspirin pretreatment to treat hyperoxia-induced acute lung injury in NF-κB–luciferase inducible transgenic mice. Antioxidants 9 (5): 429.PubMedCentralCrossRef Chen, C.-M., Y.T. Tung, C.H. Wei, P.Y. Lee, and W. Chen. 2020. Anti-inflammatory and reactive oxygen species suppression through aspirin pretreatment to treat hyperoxia-induced acute lung injury in NF-κB–luciferase inducible transgenic mice. Antioxidants 9 (5): 429.PubMedCentralCrossRef
18.
go back to reference Zi-Ru, Y., and D. Guan-Hua. 2017. Research progress of drugs for the treatment of LPS-induced acute lung injury. Chinese Journal of New Drugs 26: 1510–1515. Zi-Ru, Y., and D. Guan-Hua. 2017. Research progress of drugs for the treatment of LPS-induced acute lung injury. Chinese Journal of New Drugs 26: 1510–1515.
19.
go back to reference Zhu, H., T. Xu, C. Qiu, B. Wu, Y. Zhang, L. Chen, Q. Xia, C. Li, B. Zhou, Z. Liu, and G. Liang. 2016. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats. European Journal of Medicinal Chemistry 121: 181–193.PubMedCrossRef Zhu, H., T. Xu, C. Qiu, B. Wu, Y. Zhang, L. Chen, Q. Xia, C. Li, B. Zhou, Z. Liu, and G. Liang. 2016. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats. European Journal of Medicinal Chemistry 121: 181–193.PubMedCrossRef
20.
go back to reference Kaeidi, A., A. Sahamsizadeh, M. Allahtavakoli, I. Fatemi, M. Rahmani, E. Hakimizadeh, and J. Hassanshahi. 2020. The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: the role of oxidative stress, inflammation and apoptosis. Molecular Biology Reports 47 (2): 1371–1379.PubMedCrossRef Kaeidi, A., A. Sahamsizadeh, M. Allahtavakoli, I. Fatemi, M. Rahmani, E. Hakimizadeh, and J. Hassanshahi. 2020. The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: the role of oxidative stress, inflammation and apoptosis. Molecular Biology Reports 47 (2): 1371–1379.PubMedCrossRef
21.
go back to reference Al-Azzawie, H.F., and M.-S.S. Alhamdani. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life sciences 78 (12): 1371–1377.PubMedCrossRef Al-Azzawie, H.F., and M.-S.S. Alhamdani. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life sciences 78 (12): 1371–1377.PubMedCrossRef
22.
go back to reference Impellizzeri, D., E. Esposito, E. Mazzon, I. Paterniti, R. di Paola, P. Bramanti, V.M. Morittu, A. Procopio, D. Britti, and S. Cuzzocrea. 2011. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clinical Nutrition 30 (4): 533–540.PubMedCrossRef Impellizzeri, D., E. Esposito, E. Mazzon, I. Paterniti, R. di Paola, P. Bramanti, V.M. Morittu, A. Procopio, D. Britti, and S. Cuzzocrea. 2011. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clinical Nutrition 30 (4): 533–540.PubMedCrossRef
23.
go back to reference Andreadou, I., E.K. Iliodromitis, E. Mikros, M. Constantinou, A. Agalias, P. Magiatis, A.L. Skaltsounis, E. Kamber, A. Tsantili-Kakoulidou, and D.T. Kremastinos. 2006. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. The journal of nutrition 136 (8): 2213–2219.PubMedCrossRef Andreadou, I., E.K. Iliodromitis, E. Mikros, M. Constantinou, A. Agalias, P. Magiatis, A.L. Skaltsounis, E. Kamber, A. Tsantili-Kakoulidou, and D.T. Kremastinos. 2006. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. The journal of nutrition 136 (8): 2213–2219.PubMedCrossRef
24.
go back to reference Çömez, M.S., et al., Protective effect of oleuropein on ketamine-induced cardiotoxicity in rats. Naunyn-Schmiedeberg’s archives of pharmacology, 2020. Çömez, M.S., et al., Protective effect of oleuropein on ketamine-induced cardiotoxicity in rats. Naunyn-Schmiedeberg’s archives of pharmacology, 2020.
25.
go back to reference MAECHLER, P., et al., Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting beta-cells. 2011. MAECHLER, P., et al., Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting beta-cells. 2011.
26.
go back to reference Chimento, A., I. Casaburi, C. Rosano, P. Avena, A. de Luca, C. Campana, E. Martire, M.F. Santolla, M. Maggiolini, V. Pezzi, and R. Sirianni. 2014. Oleuropein and hydroxytyrosol activate GPER/GPR 30-dependent pathways leading to apoptosis of ER-negative SKBR 3 breast cancer cells. Molecular nutrition & food research 58 (3): 478–489.CrossRef Chimento, A., I. Casaburi, C. Rosano, P. Avena, A. de Luca, C. Campana, E. Martire, M.F. Santolla, M. Maggiolini, V. Pezzi, and R. Sirianni. 2014. Oleuropein and hydroxytyrosol activate GPER/GPR 30-dependent pathways leading to apoptosis of ER-negative SKBR 3 breast cancer cells. Molecular nutrition & food research 58 (3): 478–489.CrossRef
27.
go back to reference Ahmadvand, H., S. Bagheri, A. Tamjidi-Poor, M. Cheraghi, M. Azadpour, B. Ezatpour, S. Moghadam, G. Shahsavari, and M. Jalalvand. 2016. Biochemical effects of oleuropein in gentamicin-induced nephrotoxicity in rats. ARYA atherosclerosis 12 (2): 87–93.PubMedPubMedCentral Ahmadvand, H., S. Bagheri, A. Tamjidi-Poor, M. Cheraghi, M. Azadpour, B. Ezatpour, S. Moghadam, G. Shahsavari, and M. Jalalvand. 2016. Biochemical effects of oleuropein in gentamicin-induced nephrotoxicity in rats. ARYA atherosclerosis 12 (2): 87–93.PubMedPubMedCentral
28.
go back to reference Qin, L., M. Li, H.L. Tan, H.X. Yang, S.D. Li, Z.X. Luan, Y.F. Chen, and M.H. Yang. 2020. Mechanistic target of rapamycin-mediated autophagy is involved in the alleviation of lipopolysaccharide-induced acute lung injury in rats. International Immunopharmacology 78: 105790.PubMedCrossRef Qin, L., M. Li, H.L. Tan, H.X. Yang, S.D. Li, Z.X. Luan, Y.F. Chen, and M.H. Yang. 2020. Mechanistic target of rapamycin-mediated autophagy is involved in the alleviation of lipopolysaccharide-induced acute lung injury in rats. International Immunopharmacology 78: 105790.PubMedCrossRef
29.
go back to reference Andreadou, I., F. Sigala, E.K. Iliodromitis, M. Papaefthimiou, C. Sigalas, N. Aligiannis, P. Savvari, V. Gorgoulis, E. Papalabros, and D.T. Kremastinos. 2007. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of molecular and cellular cardiology 42 (3): 549–558.PubMedCrossRef Andreadou, I., F. Sigala, E.K. Iliodromitis, M. Papaefthimiou, C. Sigalas, N. Aligiannis, P. Savvari, V. Gorgoulis, E. Papalabros, and D.T. Kremastinos. 2007. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of molecular and cellular cardiology 42 (3): 549–558.PubMedCrossRef
30.
go back to reference Redinbaugh, M.G., and R.B. Turley. 1986. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Analytical biochemistry 153 (2): 267–271.PubMedCrossRef Redinbaugh, M.G., and R.B. Turley. 1986. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Analytical biochemistry 153 (2): 267–271.PubMedCrossRef
31.
go back to reference Saadat, S., F. Beheshti, V.R. Askari, M. Hosseini, N. Mohamadian Roshan, and M.H. Boskabady. 2019. Aminoguanidine affects systemic and lung inflammation induced by lipopolysaccharide in rats. Respiratory research 20 (1): 96.PubMedPubMedCentralCrossRef Saadat, S., F. Beheshti, V.R. Askari, M. Hosseini, N. Mohamadian Roshan, and M.H. Boskabady. 2019. Aminoguanidine affects systemic and lung inflammation induced by lipopolysaccharide in rats. Respiratory research 20 (1): 96.PubMedPubMedCentralCrossRef
32.
go back to reference Placer, Z.A., L.L. Cushman, and B.C. Johnson. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry 16 (2): 359–364.PubMedCrossRef Placer, Z.A., L.L. Cushman, and B.C. Johnson. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry 16 (2): 359–364.PubMedCrossRef
33.
go back to reference Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry 25: 192–205.PubMedCrossRef Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry 25: 192–205.PubMedCrossRef
34.
go back to reference Lawrence, R.A., and R.F. Burk. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications 71 (4): 952–958.PubMedCrossRef Lawrence, R.A., and R.F. Burk. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications 71 (4): 952–958.PubMedCrossRef
35.
go back to reference Aebi, H., Catalase. Methods of enzymatic analysis, 1983. Aebi, H., Catalase. Methods of enzymatic analysis, 1983.
36.
go back to reference Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry 193: 265–275.CrossRef Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry 193: 265–275.CrossRef
37.
go back to reference Smith, K.M., J.D. Mrozek, S.C. Simonton, D.R. Bing, P.A. Meyers, J.E. Connett, and M.C. Mammel. 1997. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Critical care medicine 25 (11): 1888–1897.PubMedCrossRef Smith, K.M., J.D. Mrozek, S.C. Simonton, D.R. Bing, P.A. Meyers, J.E. Connett, and M.C. Mammel. 1997. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Critical care medicine 25 (11): 1888–1897.PubMedCrossRef
38.
go back to reference Fenton, M.J., and D.T. Golenbock. 1998. LPS-binding proteins and receptors. Journal of leukocyte biology 64 (1): 25–32.PubMedCrossRef Fenton, M.J., and D.T. Golenbock. 1998. LPS-binding proteins and receptors. Journal of leukocyte biology 64 (1): 25–32.PubMedCrossRef
39.
go back to reference Szarka, R.J., N. Wang, L. Gordon, P.N. Nation, and R.H. Smith. 1997. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. Journal of immunological methods 202 (1): 49–57.PubMedCrossRef Szarka, R.J., N. Wang, L. Gordon, P.N. Nation, and R.H. Smith. 1997. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. Journal of immunological methods 202 (1): 49–57.PubMedCrossRef
40.
go back to reference Thangavel, J., S. Samanta, S. Rajasingh, B. Barani, Y.T. Xuan, B. Dawn, and J. Rajasingh. 2015. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. Journal of cell science 128 (16): 3094–3105.PubMedPubMedCentral Thangavel, J., S. Samanta, S. Rajasingh, B. Barani, Y.T. Xuan, B. Dawn, and J. Rajasingh. 2015. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. Journal of cell science 128 (16): 3094–3105.PubMedPubMedCentral
41.
go back to reference KL, B., and B. Meyrick. 1986. Endotoxin and lung injury. Am Rev Respir Dis 133: 913–927. KL, B., and B. Meyrick. 1986. Endotoxin and lung injury. Am Rev Respir Dis 133: 913–927.
42.
go back to reference Martin, M.A., and H.J. Silverman. 1992. Gram-negative sepsis and the adult respiratory distress syndrome. Clinical infectious diseases 14 (6): 1213–1228.PubMedCrossRef Martin, M.A., and H.J. Silverman. 1992. Gram-negative sepsis and the adult respiratory distress syndrome. Clinical infectious diseases 14 (6): 1213–1228.PubMedCrossRef
43.
go back to reference Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of clinical investigation 122 (8): 2731–2740.PubMedPubMedCentralCrossRef Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of clinical investigation 122 (8): 2731–2740.PubMedPubMedCentralCrossRef
44.
go back to reference Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular medicine 17 (3-4): 293–307.PubMedCrossRef Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular medicine 17 (3-4): 293–307.PubMedCrossRef
45.
46.
go back to reference Jing, W., M. Chunhua, and W. Shumin. 2015. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro. Toxicology and Applied Pharmacology 285 (2): 128–135.PubMedCrossRef Jing, W., M. Chunhua, and W. Shumin. 2015. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro. Toxicology and Applied Pharmacology 285 (2): 128–135.PubMedCrossRef
47.
go back to reference Zhang, H., J. Sha, X. Feng, X. Hu, Y. Chen, B. Li, and H. Fan. 2019. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. International Immunopharmacology 74: 105717.PubMedCrossRef Zhang, H., J. Sha, X. Feng, X. Hu, Y. Chen, B. Li, and H. Fan. 2019. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. International Immunopharmacology 74: 105717.PubMedCrossRef
48.
go back to reference Müller-Redetzky, H.C., N. Suttorp, and M. Witzenrath. 2014. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell and tissue research 355 (3): 657–673.PubMedPubMedCentralCrossRef Müller-Redetzky, H.C., N. Suttorp, and M. Witzenrath. 2014. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell and tissue research 355 (3): 657–673.PubMedPubMedCentralCrossRef
49.
go back to reference Di Meo, S., et al. 2016. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative medicine and cellular longevity 2016. Di Meo, S., et al. 2016. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative medicine and cellular longevity 2016.
50.
go back to reference Mokhtari-Zaer, A., F. Norouzi, V.R. Askari, M.R. Khazdair, N.M. Roshan, M. Boskabady, M. Hosseini, and M.H. Boskabady. 2020. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. Journal of Ethnopharmacology 253: 112653.PubMedCrossRef Mokhtari-Zaer, A., F. Norouzi, V.R. Askari, M.R. Khazdair, N.M. Roshan, M. Boskabady, M. Hosseini, and M.H. Boskabady. 2020. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. Journal of Ethnopharmacology 253: 112653.PubMedCrossRef
51.
go back to reference Ye, J., M. Guan, Y. Lu, D. Zhang, C. Li, and C. Zhou. 2019. Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary pharmacology & therapeutics 54: 53–59.CrossRef Ye, J., M. Guan, Y. Lu, D. Zhang, C. Li, and C. Zhou. 2019. Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary pharmacology & therapeutics 54: 53–59.CrossRef
52.
go back to reference Jingyan, L., G. Yujuan, Y. Yiming, Z. Lingpeng, Y. Tianhua, and M. Mingxing. 2017. Salidroside attenuates LPS-induced acute lung injury in rats. Inflammation 40 (5): 1520–1531.PubMedCrossRef Jingyan, L., G. Yujuan, Y. Yiming, Z. Lingpeng, Y. Tianhua, and M. Mingxing. 2017. Salidroside attenuates LPS-induced acute lung injury in rats. Inflammation 40 (5): 1520–1531.PubMedCrossRef
53.
go back to reference Baradaran Rahimi, V., H. Rakhshandeh, F. Raucci, B. Buono, R. Shirazinia, A. Samzadeh Kermani, F. Maione, N. Mascolo, and V.R. Askari. 2019. Anti-inflammatory and anti-oxidant activity of Portulaca oleracea extract on LPS-induced rat lung injury. Molecules 24 (1): 139.PubMedCentralCrossRef Baradaran Rahimi, V., H. Rakhshandeh, F. Raucci, B. Buono, R. Shirazinia, A. Samzadeh Kermani, F. Maione, N. Mascolo, and V.R. Askari. 2019. Anti-inflammatory and anti-oxidant activity of Portulaca oleracea extract on LPS-induced rat lung injury. Molecules 24 (1): 139.PubMedCentralCrossRef
54.
go back to reference Cinar, I., B. Sirin, P. Aydin, E. Toktay, E. Cadirci, I. Halici, and Z. Halici. 2019. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life sciences 221: 327–334.PubMedCrossRef Cinar, I., B. Sirin, P. Aydin, E. Toktay, E. Cadirci, I. Halici, and Z. Halici. 2019. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life sciences 221: 327–334.PubMedCrossRef
55.
go back to reference Motawea, M.H., H.A. Abd Elmaksoud, M.G. Elharrif, A.A.E. Desoky, and A. Ibrahimi. 2020. Evaluation of anti-inflammatory and antioxidant profile of oleuropein in experimentally induced ulcerative colitis. International Journal of Molecular and Cellular Medicine 9 (3): 224–233.PubMedPubMedCentral Motawea, M.H., H.A. Abd Elmaksoud, M.G. Elharrif, A.A.E. Desoky, and A. Ibrahimi. 2020. Evaluation of anti-inflammatory and antioxidant profile of oleuropein in experimentally induced ulcerative colitis. International Journal of Molecular and Cellular Medicine 9 (3): 224–233.PubMedPubMedCentral
56.
go back to reference Alsharif, K.F., A.A. Almalki, O. al-Amer, A.H. Mufti, A. Theyab, M.S. Lokman, S.S. Ramadan, R.S. Almeer, M.M. Hafez, R.B. Kassab, and A.E. Abdel Moneim. 2020. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB life 72 (10): 2121–2132.PubMedCrossRef Alsharif, K.F., A.A. Almalki, O. al-Amer, A.H. Mufti, A. Theyab, M.S. Lokman, S.S. Ramadan, R.S. Almeer, M.M. Hafez, R.B. Kassab, and A.E. Abdel Moneim. 2020. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB life 72 (10): 2121–2132.PubMedCrossRef
57.
go back to reference Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & redox signaling 20 (7): 1126–1167.CrossRef Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & redox signaling 20 (7): 1126–1167.CrossRef
58.
go back to reference Biswas, S.K., Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative medicine and cellular longevity, 2016. 2016. Biswas, S.K., Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative medicine and cellular longevity, 2016. 2016.
59.
go back to reference Minamino, T., and I. Komuro. 2006. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. The Journal of clinical investigation 116 (9): 2316–2319.PubMedPubMedCentralCrossRef Minamino, T., and I. Komuro. 2006. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. The Journal of clinical investigation 116 (9): 2316–2319.PubMedPubMedCentralCrossRef
60.
go back to reference Paladino, J., J. Hotchkiss, and H. Rabb. 2009. Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease? Microvascular research 77 (1): 8–12.PubMedCrossRef Paladino, J., J. Hotchkiss, and H. Rabb. 2009. Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease? Microvascular research 77 (1): 8–12.PubMedCrossRef
61.
go back to reference Fan, J., R.D. Ye, and A.B. Malik. 2001. Transcriptional mechanisms of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 281 (5): L1037–L1050.PubMedCrossRef Fan, J., R.D. Ye, and A.B. Malik. 2001. Transcriptional mechanisms of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 281 (5): L1037–L1050.PubMedCrossRef
62.
go back to reference Blackwell, T.S., T.R. Blackwell, E.P. Holden, B.W. Christman, and J.W. Christman. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. The Journal of Immunology 157 (4): 1630–1637.PubMedCrossRef Blackwell, T.S., T.R. Blackwell, E.P. Holden, B.W. Christman, and J.W. Christman. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. The Journal of Immunology 157 (4): 1630–1637.PubMedCrossRef
63.
go back to reference Zhang, Y., Z. du, Q. Zhou, Y. Wang, and J. Li. 2014. Remifentanil attenuates lipopolysaccharide-induced acute lung injury by downregulating the NF-κB signaling pathway. Inflammation 37 (5): 1654–1660.PubMedCrossRef Zhang, Y., Z. du, Q. Zhou, Y. Wang, and J. Li. 2014. Remifentanil attenuates lipopolysaccharide-induced acute lung injury by downregulating the NF-κB signaling pathway. Inflammation 37 (5): 1654–1660.PubMedCrossRef
64.
go back to reference Geyikoglu, F., H. Isikgoz, H. Onalan, S. Colak, S. Cerig, M. Bakir, M. Hosseinigouzdagani, K. Koc, H.S. Erol, Y.S. Saglam, and S. Yildirim. 2017. Impact of high-dose oleuropein on cisplatin-induced oxidative stress, genotoxicity and pathological changes in rat stomach and lung. Journal of Asian natural products research 19 (12): 1214–1231.PubMedCrossRef Geyikoglu, F., H. Isikgoz, H. Onalan, S. Colak, S. Cerig, M. Bakir, M. Hosseinigouzdagani, K. Koc, H.S. Erol, Y.S. Saglam, and S. Yildirim. 2017. Impact of high-dose oleuropein on cisplatin-induced oxidative stress, genotoxicity and pathological changes in rat stomach and lung. Journal of Asian natural products research 19 (12): 1214–1231.PubMedCrossRef
65.
go back to reference Erol, H., et al. 2020. The effects of oleuropein on lung and heart injury in cecal ligation and puncture-induced sepsis. Eurasian Journal of Veterinary Sciences 36: 221–231.CrossRef Erol, H., et al. 2020. The effects of oleuropein on lung and heart injury in cecal ligation and puncture-induced sepsis. Eurasian Journal of Veterinary Sciences 36: 221–231.CrossRef
66.
go back to reference Meng, L., L. Li, S. Lu, K. Li, Z. Su, Y. Wang, X. Fan, X. Li, and G. Zhao. 2018. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Molecular immunology 94: 7–17.PubMedCrossRef Meng, L., L. Li, S. Lu, K. Li, Z. Su, Y. Wang, X. Fan, X. Li, and G. Zhao. 2018. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Molecular immunology 94: 7–17.PubMedCrossRef
67.
go back to reference Ashbaugh, D., D. Boyd Bigelow, T.L. Petty, and B.E. Levine. 1967. Acute respiratory distress in adults. The Lancet 290 (7511): 319–323.CrossRef Ashbaugh, D., D. Boyd Bigelow, T.L. Petty, and B.E. Levine. 1967. Acute respiratory distress in adults. The Lancet 290 (7511): 319–323.CrossRef
68.
go back to reference Ichikado, K., M. Suga, Y. Gushima, T. Johkoh, K. Iyonaga, T. Yokoyama, O. Honda, Y. Shigeto, S. Tomiguchi, M. Takahashi, H. Itoh, J. Ikezoe, N.L. Müller, and M. Ando. 2000. Hyperoxia-induced diffuse alveolar damage in pigs: correlation between thin-section CT and histopathologic findings. Radiology 216 (2): 531–538.PubMedCrossRef Ichikado, K., M. Suga, Y. Gushima, T. Johkoh, K. Iyonaga, T. Yokoyama, O. Honda, Y. Shigeto, S. Tomiguchi, M. Takahashi, H. Itoh, J. Ikezoe, N.L. Müller, and M. Ando. 2000. Hyperoxia-induced diffuse alveolar damage in pigs: correlation between thin-section CT and histopathologic findings. Radiology 216 (2): 531–538.PubMedCrossRef
69.
go back to reference Pelosi, P., et al., Pulmonary and extrapulmonary acute respiratory distress syndrome are different. European Respiratory Journal, 2003. 22(42 suppl): p. 48s-56s. Pelosi, P., et al., Pulmonary and extrapulmonary acute respiratory distress syndrome are different. European Respiratory Journal, 2003. 22(42 suppl): p. 48s-56s.
70.
go back to reference Wu, G., X.P. dai, X.R. Li, and H.P. Jiang. 2017. Antioxidant and anti-inflammatory effects of Rhamnazin on lipopolysaccharide-induced acute lung injury and inflammation in rats. African Journal of Traditional, Complementary and Alternative Medicines 14 (4): 201–212.CrossRef Wu, G., X.P. dai, X.R. Li, and H.P. Jiang. 2017. Antioxidant and anti-inflammatory effects of Rhamnazin on lipopolysaccharide-induced acute lung injury and inflammation in rats. African Journal of Traditional, Complementary and Alternative Medicines 14 (4): 201–212.CrossRef
71.
go back to reference Gao, P., et al. 2018. The therapeutic effects of traditional Chinese medicine Fusu agent in LPS-induced acute lung injury model rats. Drug Design, Development and Therapy 12: 3867.PubMedPubMedCentralCrossRef Gao, P., et al. 2018. The therapeutic effects of traditional Chinese medicine Fusu agent in LPS-induced acute lung injury model rats. Drug Design, Development and Therapy 12: 3867.PubMedPubMedCentralCrossRef
Metadata
Title
Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats
Authors
Nursel Dikmen
Mustafa Cellat
Muhammed Etyemez
Cafer Tayer İşler
Ahmet Uyar
Tuba Aydın
Mehmet Güvenç
Publication date
01-12-2021
Publisher
Springer US
Published in
Inflammation / Issue 6/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01496-x

Other articles of this Issue 6/2021

Inflammation 6/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine