Skip to main content
Top

Open Access 03-05-2024 | Acute Myeloid Leukemia | Original Article

Modeling and therapeutic targeting of t(8;21) AML with/without TP53 deficiency

Authors: Wenyu Zhang, Jingmei Li, Keita Yamamoto, Susumu Goyama

Published in: International Journal of Hematology

Login to get access

Abstract

Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-ETO is one of the most common subtypes of AML. Although t(8;21) AML has been classified as favorable-risk, only about half of patients are cured with current therapies. Several genetic abnormalities, including TP53 mutations and deletions, negatively impact survival in t(8;21) AML. In this study, we established Cas9+ mouse models of t(8;21) AML with intact or deficient Tpr53 (a mouse homolog of TP53) using a retrovirus-mediated gene transfer and transplantation system. Trp53 deficiency accelerates the in vivo development of AML driven by RUNX1-ETO9a, a short isoform of RUNX1-ETO with strong leukemogenic potential. Trp53 deficiency also confers resistance to genetic depletion of RUNX1 and a TP53-activating drug in t(8;21) AML. However, Trp53-deficient t(8;21) AML cells were still sensitive to several drugs such as dexamethasone. Cas9+ RUNX1-ETO9a cells with/without Trp53 deficiency can produce AML in vivo, can be cultured in vitro for several weeks, and allow efficient gene depletion using the CRISPR/Cas9 system, providing useful tools to advance our understanding of t(8;21) AML.
Literature
6.
go back to reference Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Braundl K, Tschuri S, Vosberg S, Konstandin NP, Wang C, Hartmann L, Graf A, Krebs S, Blum H, Schneider S, Thiede C, Middeke JM, Stolzel F, Rollig C, Schetelig J, Ehninger G, Kramer A, Braess J, Gorlich D, Sauerland MC, Berdel WE, Wormann BJ, Hiddemann W, Spiekermann K, Bohlander SK, Greif PA. The clinical mutatome of core binding factor leukemia. Leukemia. 2020;34:1553–62. https://doi.org/10.1038/s41375-019-0697-0.CrossRefPubMedPubMedCentral Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Braundl K, Tschuri S, Vosberg S, Konstandin NP, Wang C, Hartmann L, Graf A, Krebs S, Blum H, Schneider S, Thiede C, Middeke JM, Stolzel F, Rollig C, Schetelig J, Ehninger G, Kramer A, Braess J, Gorlich D, Sauerland MC, Berdel WE, Wormann BJ, Hiddemann W, Spiekermann K, Bohlander SK, Greif PA. The clinical mutatome of core binding factor leukemia. Leukemia. 2020;34:1553–62. https://​doi.​org/​10.​1038/​s41375-019-0697-0.CrossRefPubMedPubMedCentral
10.
go back to reference Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S. Enhanced proliferative potential in culture of cells from P53-deficient mice. Oncogene. 1993;8:3313–22.PubMed Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S. Enhanced proliferative potential in culture of cells from P53-deficient mice. Oncogene. 1993;8:3313–22.PubMed
12.
go back to reference Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A, Kawabata KC, Togami K, Nagase R, Horikawa S, Saika M, Micol JB, Hayashi Y, Harada Y, Harada H, Inaba T, Tien HF, Abdel-Wahab O, Kitamura T. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 2015;29:847–57. https://doi.org/10.1038/leu.2014.301.CrossRefPubMed Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A, Kawabata KC, Togami K, Nagase R, Horikawa S, Saika M, Micol JB, Hayashi Y, Harada Y, Harada H, Inaba T, Tien HF, Abdel-Wahab O, Kitamura T. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 2015;29:847–57. https://​doi.​org/​10.​1038/​leu.​2014.​301.CrossRefPubMed
15.
go back to reference Goyama S, Schibler J, Gasilina A, Shrestha M, Lin S, Link KA, Chen J, Whitman SP, Bloomfield CD, Nicolet D, Assi SA, Ptasinska A, Heidenreich O, Bonifer C, Kitamura T, Nassar NN, Mulloy JC. UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia. 2016;30:728–39. https://doi.org/10.1038/leu.2015.275.CrossRefPubMed Goyama S, Schibler J, Gasilina A, Shrestha M, Lin S, Link KA, Chen J, Whitman SP, Bloomfield CD, Nicolet D, Assi SA, Ptasinska A, Heidenreich O, Bonifer C, Kitamura T, Nassar NN, Mulloy JC. UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia. 2016;30:728–39. https://​doi.​org/​10.​1038/​leu.​2015.​275.CrossRefPubMed
18.
go back to reference Heck D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32:941–6. https://doi.org/10.1038/nbt.2951.CrossRef Heck D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014;32:941–6. https://​doi.​org/​10.​1038/​nbt.​2951.CrossRef
19.
go back to reference Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, Hirata M, Kataoka T, Yano A, Yamada Y, Kiyose H, Tokumasu M, Matsuo H, Tanaka S, Okuno Y, Muto M, Naka K, Ito K, Kitamura T, Kaneda Y, Liu PP, Bando T, Adachi S, Sugiyama H, Kamikubo Y. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Investig. 2017;127:2815–28. https://doi.org/10.1172/jci91788.CrossRefPubMedPubMedCentral Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, Hirata M, Kataoka T, Yano A, Yamada Y, Kiyose H, Tokumasu M, Matsuo H, Tanaka S, Okuno Y, Muto M, Naka K, Ito K, Kitamura T, Kaneda Y, Liu PP, Bando T, Adachi S, Sugiyama H, Kamikubo Y. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Investig. 2017;127:2815–28. https://​doi.​org/​10.​1172/​jci91788.CrossRefPubMedPubMedCentral
25.
go back to reference Yabushita T, Chinen T, Nishiyama A, Asada S, Shimura R, Isobe T, Yamamoto K, Sato N, Enomoto Y, Tanaka Y, Fukuyama T, Satoh H, Kato K, Saitoh K, Ishikawa T, Soga T, Nannya Y, Fukagawa T, Nakanishi M, Kitagawa D, Kitamura T, Goyama S. Mitotic perturbation is a key mechanism of action of decitabine in myeloid tumor treatment. Cell Rep. 2023;42: 113098. https://doi.org/10.1016/j.celrep.2023.113098.CrossRefPubMed Yabushita T, Chinen T, Nishiyama A, Asada S, Shimura R, Isobe T, Yamamoto K, Sato N, Enomoto Y, Tanaka Y, Fukuyama T, Satoh H, Kato K, Saitoh K, Ishikawa T, Soga T, Nannya Y, Fukagawa T, Nakanishi M, Kitagawa D, Kitamura T, Goyama S. Mitotic perturbation is a key mechanism of action of decitabine in myeloid tumor treatment. Cell Rep. 2023;42: 113098. https://​doi.​org/​10.​1016/​j.​celrep.​2023.​113098.CrossRefPubMed
Metadata
Title
Modeling and therapeutic targeting of t(8;21) AML with/without TP53 deficiency
Authors
Wenyu Zhang
Jingmei Li
Keita Yamamoto
Susumu Goyama
Publication date
03-05-2024
Publisher
Springer Nature Singapore
Published in
International Journal of Hematology
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-024-03783-3
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine