Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Acute Myeloid Leukemia | Research

Analysis of the differential expression and prognostic relationship of DEGs in AML based on TCGA database

Authors: Yue Gao, Yinnong Jia, Zhengmin Yu, Xinyu Ji, Xiaowen Liu, Lei Han, Hengdong Zhang, Baoli Zhu, Ming Xu

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Acute myeloid leukemia (AML) is a common and lethal hematological malignant hyperplastic disease originating from hematopoietic stem cells. The purpose of this study is to obtain the key differentially expressed gene (DEG) related to the survival of AML by The Cancer Genome Atlas (TCGA) database and to verify these genes by a clinical follow-up investigation, in order to identify valuable predictive and prognostic biomarkers for early diagnosis of AML and predict the survival rates.

Methods

The RNA sequencing (RNA-Seq) data and clinical information of TCGA-LAML were downloaded from the TCGA database. After that we (1) screened the survival-related DEGs by Cox regression analysis, (2) selected the cytogenetics risk-related DEGs by DESeq2 R package, and (3) filtrated the genes in the top10 pathways of up-regulated and down-regulated of Normalization Enrichment Score (NES) by Gene Set Enrichment Analysis (GSEA). Finally, we focused the intersectional genes of above three parts as the key gene of the present study. The following Multivariate.
Literature
1.
go back to reference Szczepanski T, van der Velden VH, van Dongen JJ. Classification systems for acute and chronic leukaemias. Best Pract Res Clin Haematol. 2003;16(4):561–82.CrossRefPubMed Szczepanski T, van der Velden VH, van Dongen JJ. Classification systems for acute and chronic leukaemias. Best Pract Res Clin Haematol. 2003;16(4):561–82.CrossRefPubMed
2.
go back to reference Tamamyan G, et al. Frontline treatment of acute myeloid leukemia in adults. Crit Rev Oncol Hematol. 2017;110:20–34.CrossRefPubMed Tamamyan G, et al. Frontline treatment of acute myeloid leukemia in adults. Crit Rev Oncol Hematol. 2017;110:20–34.CrossRefPubMed
4.
5.
go back to reference Gyurkocza B, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol. 2010;28(17):2859–67.CrossRefPubMedPubMedCentral Gyurkocza B, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol. 2010;28(17):2859–67.CrossRefPubMedPubMedCentral
6.
go back to reference Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88(4):318–27.CrossRefPubMed Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88(4):318–27.CrossRefPubMed
7.
go back to reference Dohner H, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.CrossRefPubMed Dohner H, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.CrossRefPubMed
8.
go back to reference Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.CrossRefPubMed Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.CrossRefPubMed
9.
10.
go back to reference Takahashi K, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18(1):100–11.CrossRefPubMed Takahashi K, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18(1):100–11.CrossRefPubMed
11.
go back to reference Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68-77. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68-77.
13.
go back to reference Palumbo A, Minowada J, Erikson J, Croce CM, Rovera G. Lineage infidelity of a human myelogenous leukemia cell line. Blood. 1984;64(5):1059–63.CrossRefPubMed Palumbo A, Minowada J, Erikson J, Croce CM, Rovera G. Lineage infidelity of a human myelogenous leukemia cell line. Blood. 1984;64(5):1059–63.CrossRefPubMed
14.
go back to reference Ha K, Minden M, Hozumi N, Gelfand EW. Immunoglobulin gene rearrangement in acute myelogenous leukemia. Cancer Res. 1984;44(10):4658–60.PubMed Ha K, Minden M, Hozumi N, Gelfand EW. Immunoglobulin gene rearrangement in acute myelogenous leukemia. Cancer Res. 1984;44(10):4658–60.PubMed
15.
go back to reference Williams L, Moscinski LC, Medveczky PG. Immunoglobulin germline mu transcripts in acute myelogenous leukemia cells vary in splicing pattern and are heterogeneous. Leukemia. 1995;9(12):2016–22.PubMed Williams L, Moscinski LC, Medveczky PG. Immunoglobulin germline mu transcripts in acute myelogenous leukemia cells vary in splicing pattern and are heterogeneous. Leukemia. 1995;9(12):2016–22.PubMed
16.
go back to reference Guo M, Dong L, Huang S. Aberrant expression of immunoglobulin germline gene C mu in leukemias. Zhonghua Xue Ye Xue Za Zhi. 1998;19(7):359–62.PubMed Guo M, Dong L, Huang S. Aberrant expression of immunoglobulin germline gene C mu in leukemias. Zhonghua Xue Ye Xue Za Zhi. 1998;19(7):359–62.PubMed
17.
go back to reference Silva P, et al. Autosomal recessive agammaglobulinemia due to defect in μ heavy chain caused by a novel mutation in the IGHM gene. Genes Immun. 2017;18(3):197–9.CrossRefPubMed Silva P, et al. Autosomal recessive agammaglobulinemia due to defect in μ heavy chain caused by a novel mutation in the IGHM gene. Genes Immun. 2017;18(3):197–9.CrossRefPubMed
18.
go back to reference Dong L, Guo M, Huang SM, Jia SQ, Wang H. Transcripts of immunoglobulin germline mu: an amplified myeloid and B-lymphoid common gene program in various leukemias. Acta Haematol. 1999;101(3):119–23.CrossRefPubMed Dong L, Guo M, Huang SM, Jia SQ, Wang H. Transcripts of immunoglobulin germline mu: an amplified myeloid and B-lymphoid common gene program in various leukemias. Acta Haematol. 1999;101(3):119–23.CrossRefPubMed
19.
go back to reference Zhong L, Chen J, Huang X, Li Y, Jiang T. Monitoring immunoglobulin heavy chain and T-cell receptor gene rearrangement in cfDNA as minimal residual disease detection for patients with acute myeloid leukemia. Oncol Lett. 2018;16(2):2279–88.PubMedPubMedCentral Zhong L, Chen J, Huang X, Li Y, Jiang T. Monitoring immunoglobulin heavy chain and T-cell receptor gene rearrangement in cfDNA as minimal residual disease detection for patients with acute myeloid leukemia. Oncol Lett. 2018;16(2):2279–88.PubMedPubMedCentral
20.
go back to reference Jain N, et al. Targetable genetic alterations of TCF4 (E2–2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med. 2019;11(497):eaav5599.CrossRefPubMedPubMedCentral Jain N, et al. Targetable genetic alterations of TCF4 (E2–2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med. 2019;11(497):eaav5599.CrossRefPubMedPubMedCentral
21.
go back to reference Orozco JJ, Appelbaum FR. Unfavorable, complex, and monosomal karyotypes: the most challenging forms of acute myeloid leukemia. Oncology (Williston Park). 2012;26(8):706–12.PubMed Orozco JJ, Appelbaum FR. Unfavorable, complex, and monosomal karyotypes: the most challenging forms of acute myeloid leukemia. Oncology (Williston Park). 2012;26(8):706–12.PubMed
22.
23.
go back to reference Astaneh M, Dashti S, Esfahani ZT. Humoral immune responses against cancer-testis antigens in human malignancies. Hum Antibodies. 2019;27(4):237–40.CrossRefPubMed Astaneh M, Dashti S, Esfahani ZT. Humoral immune responses against cancer-testis antigens in human malignancies. Hum Antibodies. 2019;27(4):237–40.CrossRefPubMed
24.
go back to reference Sorich MJ, Rowland A, Karapetis CS, Hopkins AM. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials. J Thorac Oncol. 2019;14(8):1440–6.CrossRefPubMed Sorich MJ, Rowland A, Karapetis CS, Hopkins AM. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials. J Thorac Oncol. 2019;14(8):1440–6.CrossRefPubMed
26.
go back to reference Flores-Martin JF, et al. A combination of positive tumor HLA-I and negative PD-L1 expression provides an immune rejection mechanism in bladder cancer. Ann Surg Oncol. 2019;26(8):2631–9.CrossRefPubMed Flores-Martin JF, et al. A combination of positive tumor HLA-I and negative PD-L1 expression provides an immune rejection mechanism in bladder cancer. Ann Surg Oncol. 2019;26(8):2631–9.CrossRefPubMed
Metadata
Title
Analysis of the differential expression and prognostic relationship of DEGs in AML based on TCGA database
Authors
Yue Gao
Yinnong Jia
Zhengmin Yu
Xinyu Ji
Xiaowen Liu
Lei Han
Hengdong Zhang
Baoli Zhu
Ming Xu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01060-3

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue