Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Acute Kidney Injury | Research article

The salutary effect of peritoneal dialysis catheters on enhanced recovery among high-risk pediatric patients undergoing the left coronary transfer procedure: a cohort study

Authors: Chunrong Wang, Yuefu Wang, Fuxia Yan, Peng Fu, Jun Li, Lijing Yang, Sheng Shi, Jianhui Wang, Yuchen Gao, Sudena Wang, Yu Tian

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Evidence for peritoneal dialysis catheter (PDC) usage in pediatric patients undergoing surgery for deteriorating cardiac dysfunction is lacking. This investigation explored factors associated with PDC usage and its effectiveness in children with anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA).

Methods

Eighty-four children undergoing left coronary artery transfer were retrospectively recruited. The primary endpoint was the postoperative ratio of the general ward/[intensive care unit (ICU)] length of stay. Univariable and multivariable analyses were fitted to assess factors related most strongly to PDC and the ratio of general ward/ICU length of stay.

Results

Of the 84 patients, 17 (20.2%) underwent postoperative PDC placement. Patients with extreme cardiac dysfunction [left ventricular ejection fraction (LVEF) ≤25%] were much more likely to require a PDC (OR, 9.88; 95% CI, 2.13–45.76; P = 0.003). Moreover, univariate analysis indicated that concomitant mitral repair significantly decreased the likelihood of PDC placement (OR, 0.25; 95% CI, 0.07–0.85; P = 0.026). In those with cardiac dysfunction (LVEF ≤50%), PDC use was associated with a reduced ratio of ward/ICU length of stay (B, − 1.62; 95% CI, − 2.77– -0.46; P = 0.008), as was age ≤ 12 months (B, − 1.57; 95% CI, − 2.88– -0.26; P = 0.02). At the 1-year follow-up, cardiac improvement was significantly greater in patients with PDC usage than in those without it (P <  0.001), and the number of mitral recoveries was comparable between the groups (64.2% vs. 53.3%, P = 0.434).

Conclusion

In cohorts with ALCAPA, PDC placement following surgery may be necessary for patients with extreme cardiac compromise, while concomitant mitral repair can probably reduce their usage rate. PDC is beneficial in conferring an improvement in cardiac and mitral performance. Importantly, after patients are transferred from the ICU, recovery efficiency in the general ward can be enhanced by PDC placement, and hospital discharge can therefore be achieved early, especially for patients younger than 12 months or with LVEF ≤50%.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kwiatkowski DM, Goldstein SL, Cooper DS, Nelson DP, Morales DL, Krawczeski CD. Peritoneal Dialysis vs furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 2017;171(4):357–64.CrossRef Kwiatkowski DM, Goldstein SL, Cooper DS, Nelson DP, Morales DL, Krawczeski CD. Peritoneal Dialysis vs furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 2017;171(4):357–64.CrossRef
3.
go back to reference Madenci AL, Stoffan AP, Rajagopal SK, Blinder JJ, Emani SM, Thiagarajan RR, et al. Factors associated with survival in patients who undergo peritoneal dialysis catheter placement following cardiac surgery. J Pediatr Surg. 2013;48(6):1269–76.CrossRef Madenci AL, Stoffan AP, Rajagopal SK, Blinder JJ, Emani SM, Thiagarajan RR, et al. Factors associated with survival in patients who undergo peritoneal dialysis catheter placement following cardiac surgery. J Pediatr Surg. 2013;48(6):1269–76.CrossRef
4.
go back to reference Madenci AL, Thiagarajan RR, Stoffan AP, Emani SM, Rajagopal SK, Weldon CB. Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146(2):334–8.CrossRef Madenci AL, Thiagarajan RR, Stoffan AP, Emani SM, Rajagopal SK, Weldon CB. Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146(2):334–8.CrossRef
5.
go back to reference Konstantinov IE. Does peritoneal dialysis improve outcomes after heart surgery in infants? J Thorac Cardiovasc Surg. 2015;149(1):237–8.CrossRef Konstantinov IE. Does peritoneal dialysis improve outcomes after heart surgery in infants? J Thorac Cardiovasc Surg. 2015;149(1):237–8.CrossRef
6.
go back to reference Ryerson LM, Mackie AS, Atallah J, Joffe AR, Rebeyka IM, Ross DB, et al. Prophylactic peritoneal dialysis catheter does not decrease time to achieve a negative fluid balance after the Norwood procedure: a randomized controlled trial. J Thorac Cardiovasc Surg. 2015;149(1):222–8.CrossRef Ryerson LM, Mackie AS, Atallah J, Joffe AR, Rebeyka IM, Ross DB, et al. Prophylactic peritoneal dialysis catheter does not decrease time to achieve a negative fluid balance after the Norwood procedure: a randomized controlled trial. J Thorac Cardiovasc Surg. 2015;149(1):222–8.CrossRef
7.
go back to reference Bojan M, Gioanni S, Vouhe PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474–81.CrossRef Bojan M, Gioanni S, Vouhe PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474–81.CrossRef
8.
go back to reference Diab MS, Bilkhu R, Soppa G, Edsell M, Fletcher N, Heiberg J, et al. The influence of prolonged intensive care stay on quality of life, recovery, and clinical outcomes following cardiac surgery: a prospective cohort study. J Thorac Cardiovasc Surg. 2018;156(5):1906–15 e1903.CrossRef Diab MS, Bilkhu R, Soppa G, Edsell M, Fletcher N, Heiberg J, et al. The influence of prolonged intensive care stay on quality of life, recovery, and clinical outcomes following cardiac surgery: a prospective cohort study. J Thorac Cardiovasc Surg. 2018;156(5):1906–15 e1903.CrossRef
9.
go back to reference Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.CrossRef Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.CrossRef
10.
go back to reference Zappitelli M, Joseph L, Gupta IR, Bell L, Paradis G. Validation of child serum creatinine-based prediction equations for glomerular filtration rate. Pediatr Nephrol. 2007;22(2):272–81.CrossRef Zappitelli M, Joseph L, Gupta IR, Bell L, Paradis G. Validation of child serum creatinine-based prediction equations for glomerular filtration rate. Pediatr Nephrol. 2007;22(2):272–81.CrossRef
11.
go back to reference Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11(2):234–8.CrossRef Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11(2):234–8.CrossRef
12.
go back to reference Saini A, Delius RE, Seshadri S, Walters H 3rd, Mastropietro CW. Passive peritoneal drainage improves fluid balance after surgery for congenital heart disease. Eur J Cardiothorac Surg. 2012;41(2):256–60.CrossRef Saini A, Delius RE, Seshadri S, Walters H 3rd, Mastropietro CW. Passive peritoneal drainage improves fluid balance after surgery for congenital heart disease. Eur J Cardiothorac Surg. 2012;41(2):256–60.CrossRef
13.
go back to reference Thevathasan T, Copeland CC, Long DR, Patrocinio MD, Friedrich S, Grabitz SD, et al. The impact of postoperative intensive care unit admission on postoperative hospital length of stay and costs: a Prespecified propensity-matched cohort study. Anesth Analg. 2019;129(3):753–61.CrossRef Thevathasan T, Copeland CC, Long DR, Patrocinio MD, Friedrich S, Grabitz SD, et al. The impact of postoperative intensive care unit admission on postoperative hospital length of stay and costs: a Prespecified propensity-matched cohort study. Anesth Analg. 2019;129(3):753–61.CrossRef
14.
go back to reference Mori M, McCracken C, Maher K, Kogon B, Mahle W, Kanter K, et al. Outcomes of neonates requiring prolonged stay in the intensive care unit after surgical repair of congenital heart disease. J Thorac Cardiovasc Surg. 2016;152(3):720–7 e721.CrossRef Mori M, McCracken C, Maher K, Kogon B, Mahle W, Kanter K, et al. Outcomes of neonates requiring prolonged stay in the intensive care unit after surgical repair of congenital heart disease. J Thorac Cardiovasc Surg. 2016;152(3):720–7 e721.CrossRef
15.
go back to reference Namachivayam SP, d'Udekem Y, Millar J, Cheung MM, Butt W. Survival status and functional outcome of children who required prolonged intensive care after cardiac surgery. J Thorac Cardiovasc Surg. 2016;152(4):1104–12 e1103.CrossRef Namachivayam SP, d'Udekem Y, Millar J, Cheung MM, Butt W. Survival status and functional outcome of children who required prolonged intensive care after cardiac surgery. J Thorac Cardiovasc Surg. 2016;152(4):1104–12 e1103.CrossRef
16.
go back to reference Namachivayam SP, Alexander J, Slater A, Millar J, Erickson S, Tibballs J, et al. Five-year survival of children with chronic critical illness in Australia and New Zealand. Crit Care Med. 2015;43(9):1978–85.CrossRef Namachivayam SP, Alexander J, Slater A, Millar J, Erickson S, Tibballs J, et al. Five-year survival of children with chronic critical illness in Australia and New Zealand. Crit Care Med. 2015;43(9):1978–85.CrossRef
17.
go back to reference Kudumula V, Mehta C, Stumper O, Desai T, Chikermane A, Miller P, et al. Twenty-year outcome of anomalous origin of left coronary artery from pulmonary artery: management of mitral regurgitation. Ann Thorac Surg. 2014;97(3):938–44.CrossRef Kudumula V, Mehta C, Stumper O, Desai T, Chikermane A, Miller P, et al. Twenty-year outcome of anomalous origin of left coronary artery from pulmonary artery: management of mitral regurgitation. Ann Thorac Surg. 2014;97(3):938–44.CrossRef
18.
go back to reference Brown JW, Ruzmetov M, Parent JJ, Rodefeld MD, Turrentine MW. Does the degree of preoperative mitral regurgitation predict survival or the need for mitral valve repair or replacement in patients with anomalous origin of the left coronary artery from the pulmonary artery? J Thorac Cardiovasc Surg. 2008;136(3):743–8.CrossRef Brown JW, Ruzmetov M, Parent JJ, Rodefeld MD, Turrentine MW. Does the degree of preoperative mitral regurgitation predict survival or the need for mitral valve repair or replacement in patients with anomalous origin of the left coronary artery from the pulmonary artery? J Thorac Cardiovasc Surg. 2008;136(3):743–8.CrossRef
19.
go back to reference Weixler VHM, Zurakowski D, Baird CW, Guariento A, Piekarski B, Del Nido PJ, et al. Do patients with anomalous origin of the left coronary artery benefit from an early repair of the mitral valve? Eur J Cardiothorac Surg. 2020;57(1):72–7.CrossRef Weixler VHM, Zurakowski D, Baird CW, Guariento A, Piekarski B, Del Nido PJ, et al. Do patients with anomalous origin of the left coronary artery benefit from an early repair of the mitral valve? Eur J Cardiothorac Surg. 2020;57(1):72–7.CrossRef
20.
go back to reference Naimo PS, Fricke TA, d'Udekem Y, Cochrane AD, Bullock A, Robertson T, et al. Surgical intervention for anomalous origin of left coronary artery from the pulmonary artery in children: a Long-term follow-up. Ann Thorac Surg. 2016;101(5):1842–8.CrossRef Naimo PS, Fricke TA, d'Udekem Y, Cochrane AD, Bullock A, Robertson T, et al. Surgical intervention for anomalous origin of left coronary artery from the pulmonary artery in children: a Long-term follow-up. Ann Thorac Surg. 2016;101(5):1842–8.CrossRef
21.
go back to reference Wang C, Fu P, Wang Y, Yang K, Peng YG, Li J, et al. Epidemiology of acute kidney injury among paediatric patients after repair of anomalous origin of the left coronary artery from the pulmonary artery. Eur J Cardiothorac Surg. 2019;56(5):883–90.CrossRef Wang C, Fu P, Wang Y, Yang K, Peng YG, Li J, et al. Epidemiology of acute kidney injury among paediatric patients after repair of anomalous origin of the left coronary artery from the pulmonary artery. Eur J Cardiothorac Surg. 2019;56(5):883–90.CrossRef
Metadata
Title
The salutary effect of peritoneal dialysis catheters on enhanced recovery among high-risk pediatric patients undergoing the left coronary transfer procedure: a cohort study
Authors
Chunrong Wang
Yuefu Wang
Fuxia Yan
Peng Fu
Jun Li
Lijing Yang
Sheng Shi
Jianhui Wang
Yuchen Gao
Sudena Wang
Yu Tian
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02913-8

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue