Skip to main content
Top
Published in: Pediatric Nephrology 5/2018

01-05-2018 | Educational Review

Acute kidney injury: emerging pharmacotherapies in current clinical trials

Authors: Stefanie Woolridge Benoit, Prasad Devarajan

Published in: Pediatric Nephrology | Issue 5/2018

Login to get access

Abstract

Acute kidney injury (AKI) is a significant source of morbidity and mortality in pediatric patients, affecting more than one quarter of critically ill children. Despite significant need, there are no targeted therapies to reliably prevent or treat AKI. Recent advances in our understanding of renal injury and repair signaling pathways have enabled the development of several targeted pharmaceuticals. Here we review emerging pharmacotherapies for AKI that are currently in clinical trials. Categorized by their general mechanism of action, the therapies discussed include anti-inflammatory agents (recAP, AB103, ABT-719), antioxidants (iron chelators, heme arginate), vasodilators (levosimendan), apoptosis inhibitors (QPI-1002), and repair agents (THR-184, BB-3, mesenchymal stem cells).
Literature
1.
go back to reference Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, Goldstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561CrossRefPubMedPubMedCentral Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, Goldstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561CrossRefPubMedPubMedCentral
2.
go back to reference McGregor TL, Jones DP, Wang L, Danciu I, Bridges BC, Fleming GM, Shirey-Rice J, Chen L, Byrne DW, Van Driest SL (2016) Acute kidney injury incidence in Noncritically ill hospitalized children, adolescents, and young adults: a retrospective observational study. Am J Kidney Dis 67:384–390CrossRefPubMed McGregor TL, Jones DP, Wang L, Danciu I, Bridges BC, Fleming GM, Shirey-Rice J, Chen L, Byrne DW, Van Driest SL (2016) Acute kidney injury incidence in Noncritically ill hospitalized children, adolescents, and young adults: a retrospective observational study. Am J Kidney Dis 67:384–390CrossRefPubMed
3.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20CrossRefPubMed Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20CrossRefPubMed
4.
go back to reference Moffett BS, Goldstein SL (2011) Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol 6:856–863CrossRefPubMedPubMedCentral Moffett BS, Goldstein SL (2011) Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol 6:856–863CrossRefPubMedPubMedCentral
5.
go back to reference Goldstein SL (2012) Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 33:131–137CrossRefPubMed Goldstein SL (2012) Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 33:131–137CrossRefPubMed
6.
go back to reference Chaturvedi S (2017) The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol 32:227–241CrossRefPubMed Chaturvedi S (2017) The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol 32:227–241CrossRefPubMed
7.
go back to reference Greenberg JH, Coca S, Parikh CR (2014) Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: a systematic review. BMC Nephrol 15:184–184CrossRefPubMedPubMedCentral Greenberg JH, Coca S, Parikh CR (2014) Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: a systematic review. BMC Nephrol 15:184–184CrossRefPubMedPubMedCentral
8.
go back to reference Hui-Stickle S, Brewer ED, Goldstein SL (2005) Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis 45:96–101CrossRefPubMed Hui-Stickle S, Brewer ED, Goldstein SL (2005) Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis 45:96–101CrossRefPubMed
9.
go back to reference Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, Kirkendall ES (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221CrossRefPubMed Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, Kirkendall ES (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221CrossRefPubMed
10.
go back to reference (2012) Section 3: Prevention and Treatment of AKI. Kidney Int Suppl 2:37–68 (2012) Section 3: Prevention and Treatment of AKI. Kidney Int Suppl 2:37–68
11.
go back to reference Matejovic M, Ince C, Chawla LS, Blantz R, Molitoris BA, Rosner MH, Okusa MD, Kellum JA, Ronco C (2016) Renal hemodynamics in AKI: in search of new treatment targets. J Am Soc Nephrol 27:49–58CrossRefPubMed Matejovic M, Ince C, Chawla LS, Blantz R, Molitoris BA, Rosner MH, Okusa MD, Kellum JA, Ronco C (2016) Renal hemodynamics in AKI: in search of new treatment targets. J Am Soc Nephrol 27:49–58CrossRefPubMed
12.
go back to reference Okusa MD, Rosner MH, Kellum JA, Ronco C (2016) Therapeutic targets of human AKI: harmonizing human and animal AKI. J Am Soc Nephrol 27:44–48CrossRefPubMed Okusa MD, Rosner MH, Kellum JA, Ronco C (2016) Therapeutic targets of human AKI: harmonizing human and animal AKI. J Am Soc Nephrol 27:44–48CrossRefPubMed
13.
go back to reference Humphreys BD, Cantaluppi V, Portilla D, Singbartl K, Yang L, Rosner MH, Kellum JA, Ronco C, for the Acute Dialysis Quality Initiative (ADQI) XIII Work Group (2016) Targeting endogenous repair pathways after AKI. J Am Soc Nephrol 27:990–998CrossRefPubMed Humphreys BD, Cantaluppi V, Portilla D, Singbartl K, Yang L, Rosner MH, Kellum JA, Ronco C, for the Acute Dialysis Quality Initiative (ADQI) XIII Work Group (2016) Targeting endogenous repair pathways after AKI. J Am Soc Nephrol 27:990–998CrossRefPubMed
14.
go back to reference Rabb H, Griffin MD, DB MK, Swaminathan S, Pickkers P, Rosner MH, Kellum JA, Ronco C (2016) Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27:371–379CrossRefPubMed Rabb H, Griffin MD, DB MK, Swaminathan S, Pickkers P, Rosner MH, Kellum JA, Ronco C (2016) Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27:371–379CrossRefPubMed
15.
16.
go back to reference Peters E, Heemskerk S, Masereeuw R, Pickkers P (2014) Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 63:1038–1048CrossRefPubMed Peters E, Heemskerk S, Masereeuw R, Pickkers P (2014) Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 63:1038–1048CrossRefPubMed
17.
go back to reference Peters E, Geraci S, Heemskerk S, Wilmer MJ, Bilos A, Kraenzlin B, Gretz N, Pickkers P, Masereeuw R (2015) Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br J Pharmacol 172:4932–4945CrossRefPubMedPubMedCentral Peters E, Geraci S, Heemskerk S, Wilmer MJ, Bilos A, Kraenzlin B, Gretz N, Pickkers P, Masereeuw R (2015) Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br J Pharmacol 172:4932–4945CrossRefPubMedPubMedCentral
18.
go back to reference Pickkers P, Heemskerk S, Schouten J, Laterre P-F, Vincent J-L, Beishuizen A, Jorens PG, Spapen H, Bulitta M, Peters WH, van der Hoeven JG (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 16:R14CrossRefPubMedPubMedCentral Pickkers P, Heemskerk S, Schouten J, Laterre P-F, Vincent J-L, Beishuizen A, Jorens PG, Spapen H, Bulitta M, Peters WH, van der Hoeven JG (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 16:R14CrossRefPubMedPubMedCentral
19.
go back to reference Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z (2013) CD28: direct and critical receptor for superantigen toxins. Toxins (Basel) 5:1531–1542CrossRef Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z (2013) CD28: direct and critical receptor for superantigen toxins. Toxins (Basel) 5:1531–1542CrossRef
20.
go back to reference Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, Moldawer LL, Demetriades D, Talving P, Schreiber M, Ham B, Cohen M, Opal S, Segalovich I, Maislin G, Kaempfer R, Shirvan A (2014) A novel drug for treatment of necrotizing soft-tissue infections: a randomized clinical trial. JAMA Surg 149:528–536CrossRefPubMed Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, Moldawer LL, Demetriades D, Talving P, Schreiber M, Ham B, Cohen M, Opal S, Segalovich I, Maislin G, Kaempfer R, Shirvan A (2014) A novel drug for treatment of necrotizing soft-tissue infections: a randomized clinical trial. JAMA Surg 149:528–536CrossRefPubMed
21.
go back to reference Star RA, Rajora N, Huang J, Stock RC, Catania A, Lipton JM (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proc Natl Acad Sci U S A 92:8016–8020CrossRefPubMedPubMedCentral Star RA, Rajora N, Huang J, Stock RC, Catania A, Lipton JM (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proc Natl Acad Sci U S A 92:8016–8020CrossRefPubMedPubMedCentral
22.
go back to reference PA MC, Bennett-Guerrero E, Chawla LS, Beaver T, Mehta RL, Molitoris BA, Eldred A, Ball G, Lee HJ, Houser MT, Khan S (2016) ABT-719 for the prevention of acute kidney injury in patients undergoing high-risk cardiac surgery: a randomized phase 2b clinical trial. J Am Heart Assoc. doi:10.1161/JAHA.116.003549 PA MC, Bennett-Guerrero E, Chawla LS, Beaver T, Mehta RL, Molitoris BA, Eldred A, Ball G, Lee HJ, Houser MT, Khan S (2016) ABT-719 for the prevention of acute kidney injury in patients undergoing high-risk cardiac surgery: a randomized phase 2b clinical trial. J Am Heart Assoc. doi:10.​1161/​JAHA.​116.​003549
25.
go back to reference Fraga CM, Tomasi CD, Damasio DC, Vuolo F, Ritter C, Dal-Pizzol F (2016) N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial. Crit Care 20:331CrossRefPubMedPubMedCentral Fraga CM, Tomasi CD, Damasio DC, Vuolo F, Ritter C, Dal-Pizzol F (2016) N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial. Crit Care 20:331CrossRefPubMedPubMedCentral
26.
go back to reference Papneja K, Bhatt MD, Kirby-Allen M, Arora S, Wiernikowski JT, Athale UH (2016) Fanconi syndrome secondary to Deferasirox in Diamond-Blackfan anemia: case series and recommendations for early diagnosis. Pediatr Blood Cancer 63:1480–1483CrossRefPubMed Papneja K, Bhatt MD, Kirby-Allen M, Arora S, Wiernikowski JT, Athale UH (2016) Fanconi syndrome secondary to Deferasirox in Diamond-Blackfan anemia: case series and recommendations for early diagnosis. Pediatr Blood Cancer 63:1480–1483CrossRefPubMed
27.
go back to reference Chuang GT, Tsai IJ, Tsau YK, Lu MY (2015) Transfusion-dependent thalassaemic patients with renal Fanconi syndrome due to deferasirox use. Nephrology (Carlton) 20:931–935CrossRef Chuang GT, Tsai IJ, Tsau YK, Lu MY (2015) Transfusion-dependent thalassaemic patients with renal Fanconi syndrome due to deferasirox use. Nephrology (Carlton) 20:931–935CrossRef
28.
go back to reference Dee CM, Cheuk DK, Ha SY, Chiang AK, Chan GC (2014) Incidence of deferasirox-associated renal tubular dysfunction in children and young adults with beta-thalassaemia. Br J Haematol 167:434–436CrossRefPubMed Dee CM, Cheuk DK, Ha SY, Chiang AK, Chan GC (2014) Incidence of deferasirox-associated renal tubular dysfunction in children and young adults with beta-thalassaemia. Br J Haematol 167:434–436CrossRefPubMed
29.
go back to reference Freedman MH, Boyden M, Taylor M, Skarf B (1988) Neurotoxicity associated with deferoxamine therapy. Toxicology 49:283–290CrossRefPubMed Freedman MH, Boyden M, Taylor M, Skarf B (1988) Neurotoxicity associated with deferoxamine therapy. Toxicology 49:283–290CrossRefPubMed
30.
go back to reference Cases A, Kelly J, Sabater F, Torras A, Grino MC, Lopez-Pedret J, Revert L (1990) Ocular and auditory toxicity in hemodialyzed patients receiving desferrioxamine. Nephron 56:19–23CrossRefPubMed Cases A, Kelly J, Sabater F, Torras A, Grino MC, Lopez-Pedret J, Revert L (1990) Ocular and auditory toxicity in hemodialyzed patients receiving desferrioxamine. Nephron 56:19–23CrossRefPubMed
31.
go back to reference Cohen AR, Galanello R, Piga A, DiPalma A, Vullo C, Tricta F (2000) Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol 108:305–312CrossRefPubMed Cohen AR, Galanello R, Piga A, DiPalma A, Vullo C, Tricta F (2000) Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol 108:305–312CrossRefPubMed
32.
go back to reference Bolisetty S, Zarjou A, Agarwal A (2017) Heme Oxygenase 1 as a therapeutic target in acute kidney injury. Am J Kidney Dis 69:531–545CrossRefPubMed Bolisetty S, Zarjou A, Agarwal A (2017) Heme Oxygenase 1 as a therapeutic target in acute kidney injury. Am J Kidney Dis 69:531–545CrossRefPubMed
33.
go back to reference Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, Nick HS, Agarwal A (2000) Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Renal Physiol 278:F726–F736CrossRefPubMed Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, Nick HS, Agarwal A (2000) Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Renal Physiol 278:F726–F736CrossRefPubMed
34.
go back to reference Tracz MJ, Juncos JP, Croatt AJ, Ackerman AW, Grande JP, Knutson KL, Kane GC, Terzic A, Griffin MD, Nath KA (2007) Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia. Kidney Int 72:1073–1080CrossRefPubMedPubMedCentral Tracz MJ, Juncos JP, Croatt AJ, Ackerman AW, Grande JP, Knutson KL, Kane GC, Terzic A, Griffin MD, Nath KA (2007) Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia. Kidney Int 72:1073–1080CrossRefPubMedPubMedCentral
35.
go back to reference Thomas RA, Czopek A, Bellamy CO, SJ MN, Kluth DC, Marson LP (2016) Hemin preconditioning upregulates Heme Oxygenase-1 in deceased donor renal transplant recipients: a randomized, controlled, phase IIB trial. Transplantation 100:176–183CrossRefPubMed Thomas RA, Czopek A, Bellamy CO, SJ MN, Kluth DC, Marson LP (2016) Hemin preconditioning upregulates Heme Oxygenase-1 in deceased donor renal transplant recipients: a randomized, controlled, phase IIB trial. Transplantation 100:176–183CrossRefPubMed
36.
go back to reference Farmakis D, Alvarez J, Gal TB, Brito D, Fedele F, Fonseca C, Gordon AC, Gotsman I, Grossini E, Guarracino F, Harjola V-P, Hellman Y, Heunks L, Ivancan V, Karavidas A, Kivikko M, Lomivorotov V, Longrois D, Masip J, Metra M, Morelli A, Nikolaou M, Papp Z, Parkhomenko A, Poelzl G, Pollesello P, Ravn HB, Rex S, Riha H, Ricksten S-E, RHG S, Vrtovec B, Yilmaz MB, Zielinska M, Parissis J (2016) Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: an expert panel position paper. Int J Cardiol 222:303–312CrossRefPubMed Farmakis D, Alvarez J, Gal TB, Brito D, Fedele F, Fonseca C, Gordon AC, Gotsman I, Grossini E, Guarracino F, Harjola V-P, Hellman Y, Heunks L, Ivancan V, Karavidas A, Kivikko M, Lomivorotov V, Longrois D, Masip J, Metra M, Morelli A, Nikolaou M, Papp Z, Parkhomenko A, Poelzl G, Pollesello P, Ravn HB, Rex S, Riha H, Ricksten S-E, RHG S, Vrtovec B, Yilmaz MB, Zielinska M, Parissis J (2016) Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: an expert panel position paper. Int J Cardiol 222:303–312CrossRefPubMed
37.
go back to reference Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK (2006) Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 290:F1453–F1462CrossRefPubMed Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK (2006) Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 290:F1453–F1462CrossRefPubMed
38.
go back to reference Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B (2016) Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis 67:408–416CrossRefPubMed Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B (2016) Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis 67:408–416CrossRefPubMed
39.
go back to reference Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520CrossRefPubMed Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520CrossRefPubMed
40.
41.
go back to reference Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E (2009) siRNA targeted to p53 attenuates ischemic and Cisplatin-induced acute kidney injury. J Am Soc Nephrol 20:1754–1764CrossRefPubMedPubMedCentral Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E (2009) siRNA targeted to p53 attenuates ischemic and Cisplatin-induced acute kidney injury. J Am Soc Nephrol 20:1754–1764CrossRefPubMedPubMedCentral
42.
go back to reference Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66CrossRefPubMed Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66CrossRefPubMed
43.
go back to reference Tsujimura T, Idei M, Yoshikawa M, Takase O, Hishikawa K (2016) Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases. World J Stem Cells 8:288–296CrossRefPubMedPubMedCentral Tsujimura T, Idei M, Yoshikawa M, Takase O, Hishikawa K (2016) Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases. World J Stem Cells 8:288–296CrossRefPubMedPubMedCentral
44.
go back to reference Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, Jones W, Dorai H, Ryan S, Griffiths D, Maliakal J, Jelic M, Pastorcic M, Stavljenic A, Sampath TK (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102:202–214CrossRefPubMedPubMedCentral Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, Jones W, Dorai H, Ryan S, Griffiths D, Maliakal J, Jelic M, Pastorcic M, Stavljenic A, Sampath TK (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102:202–214CrossRefPubMedPubMedCentral
45.
go back to reference Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13(Suppl 1):S14–S21PubMed Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13(Suppl 1):S14–S21PubMed
46.
go back to reference Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10:226–237CrossRefPubMed Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10:226–237CrossRefPubMed
47.
go back to reference Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W Jr, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404CrossRefPubMedPubMedCentral Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W Jr, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404CrossRefPubMedPubMedCentral
49.
go back to reference Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1997) Enhanced expression of hepatocyte growth factor/c-met by myocardial ischemia and reperfusion in a rat model. Circulation 95:2552–2558CrossRefPubMed Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1997) Enhanced expression of hepatocyte growth factor/c-met by myocardial ischemia and reperfusion in a rat model. Circulation 95:2552–2558CrossRefPubMed
50.
go back to reference Zhou D, Tan RJ, Lin L, Zhou L, Liu Y (2013) Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 84:509–520CrossRefPubMedPubMedCentral Zhou D, Tan RJ, Lin L, Zhou L, Liu Y (2013) Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 84:509–520CrossRefPubMedPubMedCentral
51.
go back to reference Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis (Basel) 2:136–144CrossRef Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis (Basel) 2:136–144CrossRef
52.
go back to reference Gong R, Rifai A, Tolbert EM, Biswas P, Centracchio JN, Dworkin LD (2004) Hepatocyte growth factor ameliorates renal interstitial inflammation in rat remnant kidney by modulating tubular expression of macrophage chemoattractant protein-1 and RANTES. J Am Soc Nephrol 15:2868–2881CrossRefPubMed Gong R, Rifai A, Tolbert EM, Biswas P, Centracchio JN, Dworkin LD (2004) Hepatocyte growth factor ameliorates renal interstitial inflammation in rat remnant kidney by modulating tubular expression of macrophage chemoattractant protein-1 and RANTES. J Am Soc Nephrol 15:2868–2881CrossRefPubMed
53.
go back to reference Narayan P, Duan B, Jiang K, Li J, Paka L, Yamin MA, Friedman SL, Weir MR, Goldberg ID (2016) Late intervention with the small molecule BB3 mitigates postischemic kidney injury. Am J Physiol Renal Physiol 311:F352–F361CrossRefPubMedPubMedCentral Narayan P, Duan B, Jiang K, Li J, Paka L, Yamin MA, Friedman SL, Weir MR, Goldberg ID (2016) Late intervention with the small molecule BB3 mitigates postischemic kidney injury. Am J Physiol Renal Physiol 311:F352–F361CrossRefPubMedPubMedCentral
54.
go back to reference Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016:4798639PubMedPubMedCentral Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016:4798639PubMedPubMedCentral
55.
go back to reference Tögel FE, Westenfelder C (2012) Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 60:1012–1022CrossRefPubMed Tögel FE, Westenfelder C (2012) Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 60:1012–1022CrossRefPubMed
56.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138CrossRef
Metadata
Title
Acute kidney injury: emerging pharmacotherapies in current clinical trials
Authors
Stefanie Woolridge Benoit
Prasad Devarajan
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 5/2018
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-017-3695-3

Other articles of this Issue 5/2018

Pediatric Nephrology 5/2018 Go to the issue