Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response

Authors: Nir Paran, Shlomo Lustig, Anat Zvi, Noam Erez, Tomer Israely, Sharon Melamed, Boaz Politi, David Ben-Nathan, Paula Schneider, Batel Lachmi, Ofir Israeli, Dana Stein, Reuven Levin, Udy Olshevsky

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fenner F, Henderson DA, Artia I, Jezek Z, Ladnyi ID: Smallpox and its Eradication. 1998, Geneva: World Health Organization Fenner F, Henderson DA, Artia I, Jezek Z, Ladnyi ID: Smallpox and its Eradication. 1998, Geneva: World Health Organization
2.
go back to reference Damon IK: Poxviruses, vol. 2. 2007, Philadelphia: Wolterskluwer, Lippincott, Williams & Wilkins Damon IK: Poxviruses, vol. 2. 2007, Philadelphia: Wolterskluwer, Lippincott, Williams & Wilkins
3.
go back to reference Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ: Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology. 2006, 345 (1): 231-243. 10.1016/j.virol.2005.09.056.PubMedCrossRef Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ: Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology. 2006, 345 (1): 231-243. 10.1016/j.virol.2005.09.056.PubMedCrossRef
4.
go back to reference Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol. 2004, 78 (19): 10230-10237. 10.1128/JVI.78.19.10230-10237.2004.PubMedPubMedCentralCrossRef Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol. 2004, 78 (19): 10230-10237. 10.1128/JVI.78.19.10230-10237.2004.PubMedPubMedCentralCrossRef
5.
go back to reference Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, Manischewitz J, King LR, Hryniewicz A, Trindade CJ, et al: Subunit recombinant vaccine protects against monkeypox. J Immunol. 2006, 177 (4): 2552-2564.PubMedCrossRef Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, Manischewitz J, King LR, Hryniewicz A, Trindade CJ, et al: Subunit recombinant vaccine protects against monkeypox. J Immunol. 2006, 177 (4): 2552-2564.PubMedCrossRef
6.
go back to reference Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL: DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology. 2000, 266 (2): 329-339. 10.1006/viro.1999.0096.PubMedCrossRef Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL: DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology. 2000, 266 (2): 329-339. 10.1006/viro.1999.0096.PubMedCrossRef
7.
go back to reference Hooper JW, Custer DM, Thompson E: Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology. 2003, 306 (1): 181-195. 10.1016/S0042-6822(02)00038-7.PubMedCrossRef Hooper JW, Custer DM, Thompson E: Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology. 2003, 306 (1): 181-195. 10.1016/S0042-6822(02)00038-7.PubMedCrossRef
8.
go back to reference Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J, Alterson K, Custer M, Rivers B, Morris J, Owens G, et al: Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine. 2009, 28 (2): 494-511. 10.1016/j.vaccine.2009.09.133.PubMedPubMedCentralCrossRef Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J, Alterson K, Custer M, Rivers B, Morris J, Owens G, et al: Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine. 2009, 28 (2): 494-511. 10.1016/j.vaccine.2009.09.133.PubMedPubMedCentralCrossRef
9.
go back to reference Hooper JW, Golden JW, Ferro AM, King AD: Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2007, 25 (10): 1814-1823. 10.1016/j.vaccine.2006.11.017.PubMedCrossRef Hooper JW, Golden JW, Ferro AM, King AD: Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2007, 25 (10): 1814-1823. 10.1016/j.vaccine.2006.11.017.PubMedCrossRef
10.
go back to reference Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, Schmaljohn CS, Schmaljohn AL, Jahrling PB: Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol. 2004, 78 (9): 4433-4443. 10.1128/JVI.78.9.4433-4443.2004.PubMedPubMedCentralCrossRef Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, Schmaljohn CS, Schmaljohn AL, Jahrling PB: Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol. 2004, 78 (9): 4433-4443. 10.1128/JVI.78.9.4433-4443.2004.PubMedPubMedCentralCrossRef
11.
go back to reference Sakhatskyy P, Wang S, Chou TH, Lu S: Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology. 2006, 355 (2): 164-174. 10.1016/j.virol.2006.07.017.PubMedCrossRef Sakhatskyy P, Wang S, Chou TH, Lu S: Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology. 2006, 355 (2): 164-174. 10.1016/j.virol.2006.07.017.PubMedCrossRef
12.
go back to reference Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S: Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology. 2008, 371 (1): 98-107. 10.1016/j.virol.2007.09.029.PubMedPubMedCentralCrossRef Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S: Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology. 2008, 371 (1): 98-107. 10.1016/j.virol.2007.09.029.PubMedPubMedCentralCrossRef
13.
go back to reference Xiao Y, Aldaz-Carroll L, Ortiz AM, Whitbeck JC, Alexander E, Lou H, Davis HL, Braciale TJ, Eisenberg RJ, Cohen GH, et al: A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine. 2007, 25 (7): 1214-1224. 10.1016/j.vaccine.2006.10.009.PubMedPubMedCentralCrossRef Xiao Y, Aldaz-Carroll L, Ortiz AM, Whitbeck JC, Alexander E, Lou H, Davis HL, Braciale TJ, Eisenberg RJ, Cohen GH, et al: A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine. 2007, 25 (7): 1214-1224. 10.1016/j.vaccine.2006.10.009.PubMedPubMedCentralCrossRef
14.
go back to reference Payne LG: Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. Virology. 1992, 187 (1): 251-260. 10.1016/0042-6822(92)90313-E.PubMedCrossRef Payne LG: Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. Virology. 1992, 187 (1): 251-260. 10.1016/0042-6822(92)90313-E.PubMedCrossRef
15.
go back to reference Roper RL, Payne LG, Moss B: Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol. 1996, 70 (6): 3753-3762.PubMedPubMedCentral Roper RL, Payne LG, Moss B: Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol. 1996, 70 (6): 3753-3762.PubMedPubMedCentral
16.
go back to reference Wolffe EJ, Weisberg AS, Moss B: The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J Virol. 2001, 75 (1): 303-310. 10.1128/JVI.75.1.303-310.2001.PubMedPubMedCentralCrossRef Wolffe EJ, Weisberg AS, Moss B: The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J Virol. 2001, 75 (1): 303-310. 10.1128/JVI.75.1.303-310.2001.PubMedPubMedCentralCrossRef
17.
go back to reference Grosenbach DW, Hansen SG, Hruby DE: Identification and analysis of vaccinia virus palmitylproteins. Virology. 2000, 275 (1): 193-206. 10.1006/viro.2000.0522.PubMedCrossRef Grosenbach DW, Hansen SG, Hruby DE: Identification and analysis of vaccinia virus palmitylproteins. Virology. 2000, 275 (1): 193-206. 10.1006/viro.2000.0522.PubMedCrossRef
18.
go back to reference Ward BM, Weisberg AS, Moss B: Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J Virol. 2003, 77 (7): 4113-4126. 10.1128/JVI.77.7.4113-4126.2003.PubMedPubMedCentralCrossRef Ward BM, Weisberg AS, Moss B: Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J Virol. 2003, 77 (7): 4113-4126. 10.1128/JVI.77.7.4113-4126.2003.PubMedPubMedCentralCrossRef
19.
go back to reference Breiman A, Carpentier DC, Ewles HA, Smith GL: Transport and stability of the vaccinia virus A34 protein is affected by the A33 protein. J Gen Virol. 2013, 94 (Pt 4): 720-725.PubMedPubMedCentralCrossRef Breiman A, Carpentier DC, Ewles HA, Smith GL: Transport and stability of the vaccinia virus A34 protein is affected by the A33 protein. J Gen Virol. 2013, 94 (Pt 4): 720-725.PubMedPubMedCentralCrossRef
20.
go back to reference Roper RL, Wolffe EJ, Weisberg A, Moss B: The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J Virol. 1998, 72 (5): 4192-4204.PubMedPubMedCentral Roper RL, Wolffe EJ, Weisberg A, Moss B: The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J Virol. 1998, 72 (5): 4192-4204.PubMedPubMedCentral
21.
go back to reference Rottger S, Frischknecht F, Reckmann I, Smith GL, Way M: Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol. 1999, 73 (4): 2863-2875.PubMedPubMedCentral Rottger S, Frischknecht F, Reckmann I, Smith GL, Way M: Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol. 1999, 73 (4): 2863-2875.PubMedPubMedCentral
22.
go back to reference Smith GL, Vanderplasschen A, Law M: The formation and function of extracellular enveloped vaccinia virus. J Gen Virol. 2002, 83 (Pt 12): 2915-2931.PubMedCrossRef Smith GL, Vanderplasschen A, Law M: The formation and function of extracellular enveloped vaccinia virus. J Gen Virol. 2002, 83 (Pt 12): 2915-2931.PubMedCrossRef
23.
go back to reference Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol. 2005, 79 (21): 13454-13462. 10.1128/JVI.79.21.13454-13462.2005.PubMedPubMedCentralCrossRef Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol. 2005, 79 (21): 13454-13462. 10.1128/JVI.79.21.13454-13462.2005.PubMedPubMedCentralCrossRef
24.
go back to reference Chen Z, Earl P, Americo J, Damon I, Smith SK, Yu F, Sebrell A, Emerson S, Cohen G, Eisenberg RJ, et al: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol. 2007, 81 (17): 8989-8995. 10.1128/JVI.00906-07.PubMedPubMedCentralCrossRef Chen Z, Earl P, Americo J, Damon I, Smith SK, Yu F, Sebrell A, Emerson S, Cohen G, Eisenberg RJ, et al: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol. 2007, 81 (17): 8989-8995. 10.1128/JVI.00906-07.PubMedPubMedCentralCrossRef
25.
go back to reference Hahn CS, Hahn YS, Braciale TJ, Rice CM: Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci USA. 1992, 89 (7): 2679-2683. 10.1073/pnas.89.7.2679.PubMedPubMedCentralCrossRef Hahn CS, Hahn YS, Braciale TJ, Rice CM: Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci USA. 1992, 89 (7): 2679-2683. 10.1073/pnas.89.7.2679.PubMedPubMedCentralCrossRef
26.
go back to reference Golden JW, Hooper JW: Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology. 2008, 377 (1): 19-29. 10.1016/j.virol.2008.04.003.PubMedCrossRef Golden JW, Hooper JW: Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology. 2008, 377 (1): 19-29. 10.1016/j.virol.2008.04.003.PubMedCrossRef
27.
go back to reference He Y, Wang Y, Struble EB, Zhang P, Chowdhury S, Reed JL, Kennedy M, Scott DE, Fisher RW: Epitope mapping by random peptide phage display reveals essential residues for vaccinia extracellular enveloped virion spread. Virol J. 2012, 9: 217-10.1186/1743-422X-9-217.PubMedPubMedCentralCrossRef He Y, Wang Y, Struble EB, Zhang P, Chowdhury S, Reed JL, Kennedy M, Scott DE, Fisher RW: Epitope mapping by random peptide phage display reveals essential residues for vaccinia extracellular enveloped virion spread. Virol J. 2012, 9: 217-10.1186/1743-422X-9-217.PubMedPubMedCentralCrossRef
28.
go back to reference Melamed S, Paran N, Katz L, Ben-Nathan D, Israely T, Schneider P, Levin R, Lustig S: Tail scarification with Vaccinia virus Lister as a model for evaluation of smallpox vaccine potency in mice. Vaccine. 2007, 25 (45): 7743-7753. 10.1016/j.vaccine.2007.09.023.PubMedCrossRef Melamed S, Paran N, Katz L, Ben-Nathan D, Israely T, Schneider P, Levin R, Lustig S: Tail scarification with Vaccinia virus Lister as a model for evaluation of smallpox vaccine potency in mice. Vaccine. 2007, 25 (45): 7743-7753. 10.1016/j.vaccine.2007.09.023.PubMedCrossRef
29.
go back to reference Paran N, Suezer Y, Lustig S, Israely T, Schwantes A, Melamed S, Katz L, Preuss T, Hanschmann KM, Kalinke U, et al: Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J Infect Dis. 2009, 199 (1): 39-48. 10.1086/595565.PubMedCrossRef Paran N, Suezer Y, Lustig S, Israely T, Schwantes A, Melamed S, Katz L, Preuss T, Hanschmann KM, Kalinke U, et al: Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J Infect Dis. 2009, 199 (1): 39-48. 10.1086/595565.PubMedCrossRef
30.
go back to reference Parker S, Siddiqui AM, Oberle C, Hembrador E, Lanier R, Painter G, Robertson A, Buller RM: Mousepox in the C57BL/6 strain provides an improved model for evaluating anti-poxvirus therapies. Virology. 2009, 385 (1): 11-21. 10.1016/j.virol.2008.11.015.PubMedPubMedCentralCrossRef Parker S, Siddiqui AM, Oberle C, Hembrador E, Lanier R, Painter G, Robertson A, Buller RM: Mousepox in the C57BL/6 strain provides an improved model for evaluating anti-poxvirus therapies. Virology. 2009, 385 (1): 11-21. 10.1016/j.virol.2008.11.015.PubMedPubMedCentralCrossRef
31.
go back to reference Duraffour S, Mertens B, Meyer H, van den Oord JJ, Mitera T, Matthys P, Snoeck R, Andrei G: Emergence of cowpox: study of the virulence of clinical strains and evaluation of antivirals. PLoS One. 2013, 8 (2): e55808-10.1371/journal.pone.0055808.PubMedPubMedCentralCrossRef Duraffour S, Mertens B, Meyer H, van den Oord JJ, Mitera T, Matthys P, Snoeck R, Andrei G: Emergence of cowpox: study of the virulence of clinical strains and evaluation of antivirals. PLoS One. 2013, 8 (2): e55808-10.1371/journal.pone.0055808.PubMedPubMedCentralCrossRef
32.
go back to reference McCollum AM, Austin C, Nawrocki J, Howland J, Pryde J, Vaid A, Holmes D, Weil MR, Li Y, Wilkins K, et al: Investigation of the first laboratory-acquired human cowpox virus infection in the United States. J Infect Dis. 2012, 206 (1): 63-68. 10.1093/infdis/jis302.PubMedCrossRef McCollum AM, Austin C, Nawrocki J, Howland J, Pryde J, Vaid A, Holmes D, Weil MR, Li Y, Wilkins K, et al: Investigation of the first laboratory-acquired human cowpox virus infection in the United States. J Infect Dis. 2012, 206 (1): 63-68. 10.1093/infdis/jis302.PubMedCrossRef
33.
go back to reference Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12 (5): 1007-1017. 10.1110/ps.0239403.PubMedPubMedCentralCrossRef Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12 (5): 1007-1017. 10.1110/ps.0239403.PubMedPubMedCentralCrossRef
34.
go back to reference Parker KC, Bednarek MA, Coligan JE: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994, 152 (1): 163-175.PubMed Parker KC, Bednarek MA, Coligan JE: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994, 152 (1): 163-175.PubMed
35.
go back to reference Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999, 50 (3–4): 213-219.PubMedCrossRef Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999, 50 (3–4): 213-219.PubMedCrossRef
36.
go back to reference Tscharke DC, Woo WP, Sakala IG, Sidney J, Sette A, Moss DJ, Bennink JR, Karupiah G, Yewdell JW: Poxvirus CD8+ T-cell determinants and cross-reactivity in BALB/c mice. J Virol. 2006, 80 (13): 6318-6323. 10.1128/JVI.00427-06.PubMedPubMedCentralCrossRef Tscharke DC, Woo WP, Sakala IG, Sidney J, Sette A, Moss DJ, Bennink JR, Karupiah G, Yewdell JW: Poxvirus CD8+ T-cell determinants and cross-reactivity in BALB/c mice. J Virol. 2006, 80 (13): 6318-6323. 10.1128/JVI.00427-06.PubMedPubMedCentralCrossRef
37.
go back to reference Levi R, Arnon R: Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection. Vaccine. 1996, 14 (1): 85-92. 10.1016/0264-410X(95)00088-I.PubMedCrossRef Levi R, Arnon R: Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection. Vaccine. 1996, 14 (1): 85-92. 10.1016/0264-410X(95)00088-I.PubMedCrossRef
38.
go back to reference Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B: Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008, 4: 2-10.1186/1745-7580-4-2.PubMedPubMedCentralCrossRef Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B: Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008, 4: 2-10.1186/1745-7580-4-2.PubMedPubMedCentralCrossRef
39.
go back to reference Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A: A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol. 2006, 24 (7): 817-819. 10.1038/nbt1215.PubMedCrossRef Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A: A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol. 2006, 24 (7): 817-819. 10.1038/nbt1215.PubMedCrossRef
40.
go back to reference Lustig S, Fogg C, Whitbeck JC, Moss B: Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology. 2004, 328 (1): 30-35. 10.1016/j.virol.2004.07.024.PubMedCrossRef Lustig S, Fogg C, Whitbeck JC, Moss B: Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology. 2004, 328 (1): 30-35. 10.1016/j.virol.2004.07.024.PubMedCrossRef
41.
go back to reference Sirven P, Castelli FA, Probst A, Szely N, Maillere B: In vitro human CD4+ T cell response to the vaccinia protective antigens B5R and A33R. Mol Immunol. 2009, 46 (7): 1481-1487. 10.1016/j.molimm.2008.12.016.PubMedCrossRef Sirven P, Castelli FA, Probst A, Szely N, Maillere B: In vitro human CD4+ T cell response to the vaccinia protective antigens B5R and A33R. Mol Immunol. 2009, 46 (7): 1481-1487. 10.1016/j.molimm.2008.12.016.PubMedCrossRef
42.
go back to reference Thornburg NJ, Ray CA, Collier ML, Liao HX, Pickup DJ, Johnston RE: Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge. Virology. 2007, 362 (2): 441-452. 10.1016/j.virol.2007.01.001.PubMedPubMedCentralCrossRef Thornburg NJ, Ray CA, Collier ML, Liao HX, Pickup DJ, Johnston RE: Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge. Virology. 2007, 362 (2): 441-452. 10.1016/j.virol.2007.01.001.PubMedPubMedCentralCrossRef
43.
go back to reference McCoy WH, Wang X, Yokoyama WM, Hansen TH, Fremont DH: Cowpox virus employs a two-pronged strategy to outflank MHCI antigen presentation. Mol Immunol. 2013, 55 (2): 156-158. 10.1016/j.molimm.2012.11.011.PubMedPubMedCentralCrossRef McCoy WH, Wang X, Yokoyama WM, Hansen TH, Fremont DH: Cowpox virus employs a two-pronged strategy to outflank MHCI antigen presentation. Mol Immunol. 2013, 55 (2): 156-158. 10.1016/j.molimm.2012.11.011.PubMedPubMedCentralCrossRef
44.
go back to reference Erez N, Paran N, Maik-Rachline G, Politi B, Israely T, Schnider P, Fuchs P, Melamed S, Lustig S: Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex. Virol J. 2009, 6: 151-10.1186/1743-422X-6-151.PubMedPubMedCentralCrossRef Erez N, Paran N, Maik-Rachline G, Politi B, Israely T, Schnider P, Fuchs P, Melamed S, Lustig S: Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex. Virol J. 2009, 6: 151-10.1186/1743-422X-6-151.PubMedPubMedCentralCrossRef
45.
go back to reference Paran N, De Silva FS, Senkevich TG, Moss B: Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication. Cell Host Microbe. 2009, 6 (6): 563-569. 10.1016/j.chom.2009.11.005.PubMedPubMedCentralCrossRef Paran N, De Silva FS, Senkevich TG, Moss B: Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication. Cell Host Microbe. 2009, 6 (6): 563-569. 10.1016/j.chom.2009.11.005.PubMedPubMedCentralCrossRef
46.
go back to reference Xu RH, Fang M, Klein-Szanto A, Sigal LJ: Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci USA. 2007, 104 (26): 10992-10997. 10.1073/pnas.0701822104.PubMedPubMedCentralCrossRef Xu RH, Fang M, Klein-Szanto A, Sigal LJ: Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci USA. 2007, 104 (26): 10992-10997. 10.1073/pnas.0701822104.PubMedPubMedCentralCrossRef
47.
go back to reference Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, Panchanathan V, Tscharke DC, Maillere B, Grey H, Sette A: Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J Immunol. 2008, 180 (11): 7193-7202.PubMedPubMedCentralCrossRef Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, Panchanathan V, Tscharke DC, Maillere B, Grey H, Sette A: Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J Immunol. 2008, 180 (11): 7193-7202.PubMedPubMedCentralCrossRef
Metadata
Title
Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response
Authors
Nir Paran
Shlomo Lustig
Anat Zvi
Noam Erez
Tomer Israely
Sharon Melamed
Boaz Politi
David Ben-Nathan
Paula Schneider
Batel Lachmi
Ofir Israeli
Dana Stein
Reuven Levin
Udy Olshevsky
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-229

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine