Skip to main content
Top
Published in: BMC Physiology 1/2002

Open Access 01-12-2002 | Research article

Activation of the kinin system in the ovary during ovulation: Role of endogenous progesterone

Authors: Darrell W Brann, Lowell M Greenbaum, Virendra B Mahesh, XiaoXing Gao

Published in: BMC Physiology | Issue 1/2002

Login to get access

Abstract

Background

Previous work by our group and others has implicated a role for kinins in the ovulatory process. The purpose of the present study was to elucidate whether endogenous progesterone, which is an intraovarian regulator of ovulation, might be responsible for induction of the kinin system in the ovary during ovulation. The gonadotropin-primed immature rat was used as the experimental model, and the role of endogenous progesterone was explored using the antiprogestin, RU486.

Results

The results of the study revealed that RU486 treatment, as expected, significantly attenuated ovulation. Activity of the kinin-generating enzyme, kallikrein, was elevated in the ovary in control animals prior to ovulation with peak values observed at 4 h post hCG, only to fall to low levels at 10 h, with a recovery at 20 h post hCG. RU486 treatment had no significant effect on ovarian kallikrein activity as compared to the control group. Total ovarian kininogen levels in control animals increased significantly at 12–14 h after hCG – coinciding with initiation of ovulation. Thereafter, ovarian kininogen levels fell to low levels at 20 h, only to show a rebound from 24–38 h post-hCG. RU486 treatment had no significant effect on the rise of total ovarian kininogen levels from 12–14 h after hCG; however, from 30–40 h post hCG, RU486-treated animals had significantly higher total ovarian kininogen levels versus control animals, suggesting that endogenous progesterone may act to restrain elevations of kininogens in the post-ovulatory ovary. This robust elevation of ovarian kininogen levels by RU486 was found to be primarily due to an increase in T-kininogen, which is a potent cysteine protease inhibitor.

Conclusions

Taken as a whole, these results suggest that endogenous progesterone does not regulate kallikrein activity or kininogens prior to ovulation, but may provide a restraining effect on T-kininogen levels in the post-ovulatory ovary.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhoola KD, Figueroa CD, Worthy K: Bioregulation of kinins, kallikreins, kininogens and kinases. Pharmacol Rev. 1992, 44: 1-80.PubMed Bhoola KD, Figueroa CD, Worthy K: Bioregulation of kinins, kallikreins, kininogens and kinases. Pharmacol Rev. 1992, 44: 1-80.PubMed
2.
go back to reference Greenbaum LM, H Okamoto: T-kinin and T-kininogen. Methods Enzymol. 1988, 163: 272-282. 10.1016/0076-6879(88)63026-6.CrossRefPubMed Greenbaum LM, H Okamoto: T-kinin and T-kininogen. Methods Enzymol. 1988, 163: 272-282. 10.1016/0076-6879(88)63026-6.CrossRefPubMed
3.
go back to reference Clements JA: The glandular kallikrein family of enzymes: tissue specific expression and hormonal regulation. Endocrine Rev. 1989, 10: 393-419.CrossRef Clements JA: The glandular kallikrein family of enzymes: tissue specific expression and hormonal regulation. Endocrine Rev. 1989, 10: 393-419.CrossRef
4.
go back to reference Okamoto H, Greenbaum LM: Pharmacological properties of T-kinin. Biochem Pharmacol. 1983, 32: 2637-2638. 10.1016/0006-2952(83)90039-4.CrossRefPubMed Okamoto H, Greenbaum LM: Pharmacological properties of T-kinin. Biochem Pharmacol. 1983, 32: 2637-2638. 10.1016/0006-2952(83)90039-4.CrossRefPubMed
5.
go back to reference Moreau T, Esnard F, Gutman N, Degand P, Gauthier F: Cysteine-proteinase-inhibiting function of T-kininogen and of its proteolytic fragments. Eur J Biochem. 1988, 173: 185-190.CrossRefPubMed Moreau T, Esnard F, Gutman N, Degand P, Gauthier F: Cysteine-proteinase-inhibiting function of T-kininogen and of its proteolytic fragments. Eur J Biochem. 1988, 173: 185-190.CrossRefPubMed
6.
go back to reference Torres C, Li M, Walter R, Sierra F: Modulation of the ERK pathway of signal transduction by cysteine proteinase inhibitors. J Cell Biochem. 2000, 80: 11-23. 10.1002/1097-4644(20010101)80:1<11::AID-JCB20>3.0.CO;2-W.CrossRefPubMed Torres C, Li M, Walter R, Sierra F: Modulation of the ERK pathway of signal transduction by cysteine proteinase inhibitors. J Cell Biochem. 2000, 80: 11-23. 10.1002/1097-4644(20010101)80:1<11::AID-JCB20>3.0.CO;2-W.CrossRefPubMed
7.
go back to reference Gao XX, Greenbaum LM, Mahesh VB, Brann DW: Characterization of the kinin system in the ovary during ovulation in the rat. Biol Reprod. 1992, 47: 945-951.CrossRefPubMed Gao XX, Greenbaum LM, Mahesh VB, Brann DW: Characterization of the kinin system in the ovary during ovulation in the rat. Biol Reprod. 1992, 47: 945-951.CrossRefPubMed
8.
go back to reference Espey LL, Miller DH, Margolius HS: Ovarian increase in kinin-generating capacity in PMSG/hCG-primed immature rat. Am J Physiol. 1986, 251: E362-E365.PubMed Espey LL, Miller DH, Margolius HS: Ovarian increase in kinin-generating capacity in PMSG/hCG-primed immature rat. Am J Physiol. 1986, 251: E362-E365.PubMed
9.
go back to reference Holland AM, Findlay JK, Clements JA: Kallikrein gene expression in the gonadotropin-stimulated rat ovary. J Endocrinology. 2001, 170: 243-250.CrossRef Holland AM, Findlay JK, Clements JA: Kallikrein gene expression in the gonadotropin-stimulated rat ovary. J Endocrinology. 2001, 170: 243-250.CrossRef
10.
go back to reference Hellberg P, Larson L, Olofsson J, Hedin L, Brännström M: Stimulatory effects of bradykinin on the ovulatory process in the in vitro – perfused rat ovary. Biol Reprod. 1991, 44: 269-274.CrossRefPubMed Hellberg P, Larson L, Olofsson J, Hedin L, Brännström M: Stimulatory effects of bradykinin on the ovulatory process in the in vitro – perfused rat ovary. Biol Reprod. 1991, 44: 269-274.CrossRefPubMed
11.
go back to reference Yoshimura Y, Espey LL, Hosoi Y, Adachi E, Atlas S, Ghodgaonkar R, Dubin N, Wallach E: The effects of bradykinin on ovulation and prostaglandin production in the perfused rabbit ovary. Endocrinology. 1988, 122: 2540-2546.CrossRefPubMed Yoshimura Y, Espey LL, Hosoi Y, Adachi E, Atlas S, Ghodgaonkar R, Dubin N, Wallach E: The effects of bradykinin on ovulation and prostaglandin production in the perfused rabbit ovary. Endocrinology. 1988, 122: 2540-2546.CrossRefPubMed
12.
go back to reference Lydon JP, De Mayo F, Funk CR, Mani SK, Hughes AR, Montgomery CA, Shyamala G, Coneely O, O'Malley BW: Mice lacking progesterone receptor exhibit reproductive abnormalities. Genes Dev. 1995, 9: 2266-2278.CrossRefPubMed Lydon JP, De Mayo F, Funk CR, Mani SK, Hughes AR, Montgomery CA, Shyamala G, Coneely O, O'Malley BW: Mice lacking progesterone receptor exhibit reproductive abnormalities. Genes Dev. 1995, 9: 2266-2278.CrossRefPubMed
13.
go back to reference Robker R, Russell DL, Yoshioka S, Sharma SC, Lydon JP, O'Malley BW, Epsey L, Richards JS: Ovulation: a multi-gene, multi-step process. Steroids. 2000, 65: 559-570. 10.1016/S0039-128X(00)00114-8.CrossRefPubMed Robker R, Russell DL, Yoshioka S, Sharma SC, Lydon JP, O'Malley BW, Epsey L, Richards JS: Ovulation: a multi-gene, multi-step process. Steroids. 2000, 65: 559-570. 10.1016/S0039-128X(00)00114-8.CrossRefPubMed
14.
go back to reference Coneely OM, Mulac-Jericevic J, Lydon JP, De Mayo FJ: Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol Cell Endocrinol. 2001, 179: 97-103. 10.1016/S0303-7207(01)00465-8.CrossRef Coneely OM, Mulac-Jericevic J, Lydon JP, De Mayo FJ: Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol Cell Endocrinol. 2001, 179: 97-103. 10.1016/S0303-7207(01)00465-8.CrossRef
15.
go back to reference Tanaka N, Espey LL, Stacy SS, Okamura H: Epostane and indomethacin actions on ovarian kallikrein and plasminogen activator activities during ovulation in the gonadotropin-primed immature rat. Biol Reprod. 1992, 46: 665-620.CrossRefPubMed Tanaka N, Espey LL, Stacy SS, Okamura H: Epostane and indomethacin actions on ovarian kallikrein and plasminogen activator activities during ovulation in the gonadotropin-primed immature rat. Biol Reprod. 1992, 46: 665-620.CrossRefPubMed
16.
go back to reference Espey LL, Tanaka N, Adams RF, Okamura H: Ovarian hydroxyeicosatetraenoic acids compared with prostanoids and steroids during ovulation in rats. Am J Physiol. 1991, 260: E163-169.PubMed Espey LL, Tanaka N, Adams RF, Okamura H: Ovarian hydroxyeicosatetraenoic acids compared with prostanoids and steroids during ovulation in rats. Am J Physiol. 1991, 260: E163-169.PubMed
17.
go back to reference Gauthier F, Moreau T, Gutman N, el Moujahed A, Brillard-Bourdet M: Functional diversity of proteinases encoded by genes of the rat tissue kallikrein family. Agents Actions Suppl. 1992, 38: 42-50.PubMed Gauthier F, Moreau T, Gutman N, el Moujahed A, Brillard-Bourdet M: Functional diversity of proteinases encoded by genes of the rat tissue kallikrein family. Agents Actions Suppl. 1992, 38: 42-50.PubMed
18.
go back to reference Kimura A, Kihara T, Ohkura R, Ogiwara K, Takahashi T: Localization of bradykinin B(2) receptor in the follicles of porcine ovary and increased expression of matrix metalloproteinase-3 and -20 in cultured granulosa cells by bradykinin treatment. Biol Reprod. 2001, 65: 1462-1470.CrossRefPubMed Kimura A, Kihara T, Ohkura R, Ogiwara K, Takahashi T: Localization of bradykinin B(2) receptor in the follicles of porcine ovary and increased expression of matrix metalloproteinase-3 and -20 in cultured granulosa cells by bradykinin treatment. Biol Reprod. 2001, 65: 1462-1470.CrossRefPubMed
19.
go back to reference Turk B, Turk V, Turk D: Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem. 1997, 378: 141-150.PubMed Turk B, Turk V, Turk D: Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem. 1997, 378: 141-150.PubMed
20.
go back to reference Oksjoki S, Soderstrom M, Vuorio E, Anttila L: Differential expression patterns of cathepsins B, H, K, L and S in the mouse ovary. Mol Hum Reprod. 2001, 7: 27-34. 10.1093/molehr/7.1.27.CrossRefPubMed Oksjoki S, Soderstrom M, Vuorio E, Anttila L: Differential expression patterns of cathepsins B, H, K, L and S in the mouse ovary. Mol Hum Reprod. 2001, 7: 27-34. 10.1093/molehr/7.1.27.CrossRefPubMed
21.
go back to reference Barlas A, Okamoto H, Greenbaum LM: T-kininogen – the major plasma kininogen in rat adjuvant arthritis. Biochem Biophys Res Commun. 1985, 129: 280-286.CrossRefPubMed Barlas A, Okamoto H, Greenbaum LM: T-kininogen – the major plasma kininogen in rat adjuvant arthritis. Biochem Biophys Res Commun. 1985, 129: 280-286.CrossRefPubMed
22.
go back to reference Kato K, Adachi N, Iwanaga S, Abe K, Takada K, Kimura T, Sakakibara S: A new fluorogenic substrate method for the estimation of kallikrein in urine. J Biochem. 1980, 87: 1127-1132.PubMed Kato K, Adachi N, Iwanaga S, Abe K, Takada K, Kimura T, Sakakibara S: A new fluorogenic substrate method for the estimation of kallikrein in urine. J Biochem. 1980, 87: 1127-1132.PubMed
Metadata
Title
Activation of the kinin system in the ovary during ovulation: Role of endogenous progesterone
Authors
Darrell W Brann
Lowell M Greenbaum
Virendra B Mahesh
XiaoXing Gao
Publication date
01-12-2002
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2002
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/1472-6793-2-7

Other articles of this Issue 1/2002

BMC Physiology 1/2002 Go to the issue