Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 2/2024

Open Access 01-02-2024 | Research

Activation of cytotoxic lymphocytes through CD6 enhances killing of cancer cells

Authors: Mikel Gurrea-Rubio, Qi Wu, M. Asif Amin, Pei-Suen Tsou, Phillip L. Campbell, Camila I. Amarista, Yuzo Ikari, William D. Brodie, Megan N. Mattichak, Sei Muraoka, Peggy M. Randon, Matthew E. Lind, Jeffrey H. Ruth, Yang Mao-Draayer, Shengli Ding, Xiling Shen, Laura A. Cooney, Feng Lin, David A. Fox

Published in: Cancer Immunology, Immunotherapy | Issue 2/2024

Login to get access

Abstract

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell–cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft mouse models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8 + T cells. In particular, tumor-infiltrating cytotoxic lymphocytes from UMCD6-treated mice expressed higher levels of perforin and were found in higher proportions than those from IgG-treated mice. Moreover, RNA-seq analysis of human NK-92 cells treated with UMCD6 revealed that UMCD6 up-regulates the NKG2D-DAP10 receptor complex, important in NK cell activation, as well as its downstream target PI3K. Our results now describe the phenotypic changes that occur on immune cells upon treatment with UMCD6 and further confirm that the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F (2011) The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 63(4):967–1000 (PMID: 21880988)CrossRefPubMed Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F (2011) The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 63(4):967–1000 (PMID: 21880988)CrossRefPubMed
2.
go back to reference Braun M, Muller B, ter Meer D, Raffegerst S, Simm B, Wilde S, Spranger S, Ellwart J, Mosetter B, Umansky L, Lerchl T, Schendel DJ, Falk CS (2011) The CD6 scavenger receptor is differentially expressed on a CD56 natural killer cell subpopulation and contributes to natural killer-derived cytokine and chemokine secretion. J Innate Immun 3(4):420–434 (PMID: 21178331)CrossRefPubMed Braun M, Muller B, ter Meer D, Raffegerst S, Simm B, Wilde S, Spranger S, Ellwart J, Mosetter B, Umansky L, Lerchl T, Schendel DJ, Falk CS (2011) The CD6 scavenger receptor is differentially expressed on a CD56 natural killer cell subpopulation and contributes to natural killer-derived cytokine and chemokine secretion. J Innate Immun 3(4):420–434 (PMID: 21178331)CrossRefPubMed
3.
go back to reference Li Y, Singer NG, Whitbred J, Bowen MA, Fox DA, Lin F (2017) CD6 as a potential target for treating multiple sclerosis. Proc Natl Acad Sci USA 114(10):2687–2692 (PMID: 28209777). (PMCID: PMC5347585)ADSCrossRefPubMedPubMedCentral Li Y, Singer NG, Whitbred J, Bowen MA, Fox DA, Lin F (2017) CD6 as a potential target for treating multiple sclerosis. Proc Natl Acad Sci USA 114(10):2687–2692 (PMID: 28209777). (PMCID: PMC5347585)ADSCrossRefPubMedPubMedCentral
4.
go back to reference Li Y, Ruth JH, Rasmussen SM, Athukorala KS, Weber DP, Amin MA, Campbell PL, Singer NG, Fox DA, Lin F (2020) Attenuation of murine collagen-induced arthritis by targeting CD6. Arthritis Rheumatol 72(9):1505–1513 (PMID: 32307907) (PMCID: PMC7745675)CrossRefPubMedPubMedCentral Li Y, Ruth JH, Rasmussen SM, Athukorala KS, Weber DP, Amin MA, Campbell PL, Singer NG, Fox DA, Lin F (2020) Attenuation of murine collagen-induced arthritis by targeting CD6. Arthritis Rheumatol 72(9):1505–1513 (PMID: 32307907) (PMCID: PMC7745675)CrossRefPubMedPubMedCentral
5.
go back to reference Zhang L, Li Y, Qiu W, Bell BA, Dvorina N, Baldwin WM 3rd, Singer N, Kern T, Caspi RR, Fox DA, Lin F (2018) Targeting CD6 for the treatment of experimental autoimmune uveitis. J Autoimmun 90:84–93 (PMID: 29472120) (PMCID: PMC5949263)CrossRefPubMedPubMedCentral Zhang L, Li Y, Qiu W, Bell BA, Dvorina N, Baldwin WM 3rd, Singer N, Kern T, Caspi RR, Fox DA, Lin F (2018) Targeting CD6 for the treatment of experimental autoimmune uveitis. J Autoimmun 90:84–93 (PMID: 29472120) (PMCID: PMC5949263)CrossRefPubMedPubMedCentral
6.
go back to reference Enyindah-Asonye G, Li Y, Ruth JH, Spassov DS, Hebron KE, Zijlstra A, Moasser MM, Wang B, Singer NG, Cui H, Ohara RA, Rasmussen SM, Fox DA, Lin F (2017) CD318 is a ligand for CD6. Proc Natl Acad Sci USA 114(33):E6912–E6921 (PMID: 28760953) (PMCID: PMC5565428)CrossRefPubMedPubMedCentral Enyindah-Asonye G, Li Y, Ruth JH, Spassov DS, Hebron KE, Zijlstra A, Moasser MM, Wang B, Singer NG, Cui H, Ohara RA, Rasmussen SM, Fox DA, Lin F (2017) CD318 is a ligand for CD6. Proc Natl Acad Sci USA 114(33):E6912–E6921 (PMID: 28760953) (PMCID: PMC5565428)CrossRefPubMedPubMedCentral
8.
go back to reference Khan T, Kryza T, Lyons NJ, He Y, Hooper JD (2021) The CDCP1 signaling hub: a target for cancer detection and therapeutic intervention. Cancer Res 81(9):2259–2269 (PMID: 33509939)CrossRefPubMed Khan T, Kryza T, Lyons NJ, He Y, Hooper JD (2021) The CDCP1 signaling hub: a target for cancer detection and therapeutic intervention. Cancer Res 81(9):2259–2269 (PMID: 33509939)CrossRefPubMed
9.
go back to reference Uekita T, Sakai R (2011) Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci 102(11):1943–1948 (PMID: 21812858)CrossRefPubMed Uekita T, Sakai R (2011) Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci 102(11):1943–1948 (PMID: 21812858)CrossRefPubMed
10.
go back to reference Gurrea-Rubio M, Fox DA (2022) The dual role of CD6 as a therapeutic target in cancer and autoimmune disease. Front Med (Lausanne) 9:1026521 (PMID: 36275816) (PMCID: PMC9579686)CrossRefPubMed Gurrea-Rubio M, Fox DA (2022) The dual role of CD6 as a therapeutic target in cancer and autoimmune disease. Front Med (Lausanne) 9:1026521 (PMID: 36275816) (PMCID: PMC9579686)CrossRefPubMed
11.
go back to reference Ding S, Hsu C, Wang Z, Natesh NR, Millen R, Negrete M, Giroux N, Rivera GO, Dohlman A, Bose S, Rotstein T, Spiller K, Yeung A, Sun Z, Jiang C, Xi R, Wilkin B, Randon PM, Williamson I, Nelson DA, Delubac D, Oh S, Rupprecht G, Isaacs J, Jia J, Chen C, Shen JP, Kopetz S, McCall S, Smith A, Gjorevski N, Walz AC, Antonia S, Marrer-Berger E, Clevers H, Hsu D, Shen X (2022) Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 29(6):905–917 (PMID: 35508177) (PMCID: PMC9177814)CrossRefPubMedPubMedCentral Ding S, Hsu C, Wang Z, Natesh NR, Millen R, Negrete M, Giroux N, Rivera GO, Dohlman A, Bose S, Rotstein T, Spiller K, Yeung A, Sun Z, Jiang C, Xi R, Wilkin B, Randon PM, Williamson I, Nelson DA, Delubac D, Oh S, Rupprecht G, Isaacs J, Jia J, Chen C, Shen JP, Kopetz S, McCall S, Smith A, Gjorevski N, Walz AC, Antonia S, Marrer-Berger E, Clevers H, Hsu D, Shen X (2022) Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 29(6):905–917 (PMID: 35508177) (PMCID: PMC9177814)CrossRefPubMedPubMedCentral
12.
go back to reference Wang Z, Boretto M, Millen R, Natesh N, Reckzeh ES, Hsu C, Negrete M, Yao H, Quayle W, Heaton BE, Harding AT, Bose S, Driehuis E, Beumer J, Rivera GO, van Ineveld RL, Gex D, DeVilla J, Wang D, Puschhof J, Geurts MH, Yeung A, Hamele C, Smith A, Bankaitis E, Xiang K, Ding S, Nelson D, Delubac D, Rios A, Abi-Hachem R, Jang D, Goldstein BJ, Glass C, Heaton NS, Hsu D, Clevers H, Shen X (2022) Rapid tissue prototyping with micro-organospheres. Stem Cell Rep 17(9):1959–1975 (PMID: 35985334) (PMCID: PMC9481922)CrossRef Wang Z, Boretto M, Millen R, Natesh N, Reckzeh ES, Hsu C, Negrete M, Yao H, Quayle W, Heaton BE, Harding AT, Bose S, Driehuis E, Beumer J, Rivera GO, van Ineveld RL, Gex D, DeVilla J, Wang D, Puschhof J, Geurts MH, Yeung A, Hamele C, Smith A, Bankaitis E, Xiang K, Ding S, Nelson D, Delubac D, Rios A, Abi-Hachem R, Jang D, Goldstein BJ, Glass C, Heaton NS, Hsu D, Clevers H, Shen X (2022) Rapid tissue prototyping with micro-organospheres. Stem Cell Rep 17(9):1959–1975 (PMID: 35985334) (PMCID: PMC9481922)CrossRef
13.
go back to reference Klingemann H, Boissel L, Toneguzzo F (2016) Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells. Front Immunol 7:91 (PMID: 27014270) (PMCID: PMC4789404)CrossRefPubMedPubMedCentral Klingemann H, Boissel L, Toneguzzo F (2016) Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells. Front Immunol 7:91 (PMID: 27014270) (PMCID: PMC4789404)CrossRefPubMedPubMedCentral
14.
go back to reference Billadeau DD, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ (2003) NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol 4(6):557–564 (PMID: 12740575)CrossRefPubMed Billadeau DD, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ (2003) NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol 4(6):557–564 (PMID: 12740575)CrossRefPubMed
15.
go back to reference Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, Reis Sousa EC (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022–1037 (PMID: 29429633) (PMCID: PMC5847168)CrossRefPubMedPubMedCentral Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, Reis Sousa EC (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022–1037 (PMID: 29429633) (PMCID: PMC5847168)CrossRefPubMedPubMedCentral
16.
go back to reference Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156(1):322–327 (PMID: 8598480)CrossRefPubMed Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156(1):322–327 (PMID: 8598480)CrossRefPubMed
17.
go back to reference Yang M, Chen S, Du J, He J, Wang Y, Li Z, Liu G, Peng W, Zeng X, Li D, Xu P, Guo W, Chang Z, Wang S, Tian Z, Dong Z (2016) NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. Nat Commun 7:12730 (PMID: 27601261) (PMCID: PMC5023956)ADSCrossRefPubMedPubMedCentral Yang M, Chen S, Du J, He J, Wang Y, Li Z, Liu G, Peng W, Zeng X, Li D, Xu P, Guo W, Chang Z, Wang S, Tian Z, Dong Z (2016) NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. Nat Commun 7:12730 (PMID: 27601261) (PMCID: PMC5023956)ADSCrossRefPubMedPubMedCentral
18.
go back to reference Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD (2009) PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol 182(11):6933–6942 (PMID: 19454690) (PMCID: PMC2706535)CrossRefPubMed Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD (2009) PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol 182(11):6933–6942 (PMID: 19454690) (PMCID: PMC2706535)CrossRefPubMed
19.
go back to reference Wensveen FM, Jelencic V, Polic B (2018) NKG2D: A master regulator of immune cell responsiveness. Front Immunol 9:441 (PMID: 29568297) (PMCID: PMC5852076)CrossRefPubMedPubMedCentral Wensveen FM, Jelencic V, Polic B (2018) NKG2D: A master regulator of immune cell responsiveness. Front Immunol 9:441 (PMID: 29568297) (PMCID: PMC5852076)CrossRefPubMedPubMedCentral
20.
go back to reference Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224 (PMID: 20567250)CrossRefPubMed Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224 (PMID: 20567250)CrossRefPubMed
Metadata
Title
Activation of cytotoxic lymphocytes through CD6 enhances killing of cancer cells
Authors
Mikel Gurrea-Rubio
Qi Wu
M. Asif Amin
Pei-Suen Tsou
Phillip L. Campbell
Camila I. Amarista
Yuzo Ikari
William D. Brodie
Megan N. Mattichak
Sei Muraoka
Peggy M. Randon
Matthew E. Lind
Jeffrey H. Ruth
Yang Mao-Draayer
Shengli Ding
Xiling Shen
Laura A. Cooney
Feng Lin
David A. Fox
Publication date
01-02-2024
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 2/2024
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-023-03578-1

Other articles of this Issue 2/2024

Cancer Immunology, Immunotherapy 2/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine