Skip to main content
Top
Published in: Neuroradiology 7/2014

01-07-2014 | Functional Neuroradiology

Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

Authors: Woo Suk Tae, Natalia Yakunina, Tae Su Kim, Sam Soo Kim, Eui-Cheol Nam

Published in: Neuroradiology | Issue 7/2014

Login to get access

Abstract

Introduction

The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio.

Methods

Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used.

Results

In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM.

Conclusions

These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders.
Literature
1.
go back to reference Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRef Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRef
2.
go back to reference Yarkoni T, Barch DM, Gray JR, Conturo TE, Braver TS (2009) BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS One 4:e4257PubMedCrossRefPubMedCentral Yarkoni T, Barch DM, Gray JR, Conturo TE, Braver TS (2009) BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS One 4:e4257PubMedCrossRefPubMedCentral
3.
go back to reference Mazerolle EL, Beyea SD, Gawryluk JR, Brewer KD, Bowen CV, D'Arcy RC (2010) Confirming white matter fMRI activation in the corpus callosum: co-localization with DTI tractography. Neuroimage 50:616–621PubMedCrossRef Mazerolle EL, Beyea SD, Gawryluk JR, Brewer KD, Bowen CV, D'Arcy RC (2010) Confirming white matter fMRI activation in the corpus callosum: co-localization with DTI tractography. Neuroimage 50:616–621PubMedCrossRef
4.
go back to reference Gawryluk JR, Mazerolle EL, Brewer KD, Beyea SD, D’Arcy RC (2011) Investigation of fMRI activation in the internal capsule. BMC Neurosci 12(1):56 Gawryluk JR, Mazerolle EL, Brewer KD, Beyea SD, D’Arcy RC (2011) Investigation of fMRI activation in the internal capsule. BMC Neurosci 12(1):56
5.
go back to reference Kida I, Hyder F (2005) Physiology of functional magnetic resonance imaging. Methods Mol Med 124:175–195 Kida I, Hyder F (2005) Physiology of functional magnetic resonance imaging. Methods Mol Med 124:175–195
6.
go back to reference Magistretti PJ (1999) Brain energy metabolism. Academic Press, San Diego, pp 389–413 Magistretti PJ (1999) Brain energy metabolism. Academic Press, San Diego, pp 389–413
8.
9.
go back to reference Rossi DJ (2006) Another BOLD role for astrocytes: coupling blood flow to neural activity. Nat Neurosci 9:159–161PubMedCrossRef Rossi DJ (2006) Another BOLD role for astrocytes: coupling blood flow to neural activity. Nat Neurosci 9:159–161PubMedCrossRef
10.
go back to reference Jakovcevic D, Harder DR (2007) Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol 79:75–97PubMedCrossRef Jakovcevic D, Harder DR (2007) Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol 79:75–97PubMedCrossRef
11.
go back to reference Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267PubMedCrossRef Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267PubMedCrossRef
12.
13.
go back to reference Vogel J, Gehrig M, Kuschinsky W, Marti HH (2004) Massive inborn angiogenesis in the brain scarcely raises cerebral blood flow. J Cereb Blood Flow Metab 24:849–859PubMedCrossRef Vogel J, Gehrig M, Kuschinsky W, Marti HH (2004) Massive inborn angiogenesis in the brain scarcely raises cerebral blood flow. J Cereb Blood Flow Metab 24:849–859PubMedCrossRef
14.
go back to reference Klein B, Kuschinsky W, Schrock H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251:H1333–40PubMed Klein B, Kuschinsky W, Schrock H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251:H1333–40PubMed
15.
go back to reference Purves MJ (1972) The physiology of the cerebral circulation, vol. 28. CUP Archive, Cambridge Purves MJ (1972) The physiology of the cerebral circulation, vol. 28. CUP Archive, Cambridge
16.
go back to reference Thomason ME, Burrows BE, Gabrieli JD, Glover GH (2005) Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 25:824–837PubMedCrossRef Thomason ME, Burrows BE, Gabrieli JD, Glover GH (2005) Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 25:824–837PubMedCrossRef
17.
go back to reference Rostrup E, Law I, Blinkenberg M, Larsson HB, Born AP, Holm S, Paulson OB (2000) Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. Neuroimage 11:87–97PubMedCrossRef Rostrup E, Law I, Blinkenberg M, Larsson HB, Born AP, Holm S, Paulson OB (2000) Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. Neuroimage 11:87–97PubMedCrossRef
18.
go back to reference Mazerolle EL, Gawryluk JR, Dillen KN, Patterson SA, Feindel KW, Beyea SD, Stevens MT, Newman AJ, Schmidt MH, D’Arcy RC (2013) Sensitivity to white matter FMRI activation increases with field strength. PLoS One 8:e58130PubMedCrossRefPubMedCentral Mazerolle EL, Gawryluk JR, Dillen KN, Patterson SA, Feindel KW, Beyea SD, Stevens MT, Newman AJ, Schmidt MH, D’Arcy RC (2013) Sensitivity to white matter FMRI activation increases with field strength. PLoS One 8:e58130PubMedCrossRefPubMedCentral
19.
go back to reference Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058PubMed Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058PubMed
20.
go back to reference Omura K, Tsukamoto T, Kotani Y, Ohgami Y, Minami M, Inoue Y (2004) Different mechanisms involved in interhemispheric transfer of visuomotor information. Neuroreport 15:2707–2711PubMedCrossRef Omura K, Tsukamoto T, Kotani Y, Ohgami Y, Minami M, Inoue Y (2004) Different mechanisms involved in interhemispheric transfer of visuomotor information. Neuroreport 15:2707–2711PubMedCrossRef
21.
go back to reference Weber B, Treyer V, Oberholzer N, Jaermann T, Boesiger P, Brugger P, Regard M, Buck A, Savazzi S, Marzi CA (2005) Attention and interhemispheric transfer: a behavioral and fMRI study. J Cogn Neurosci 17:113–123PubMedCrossRef Weber B, Treyer V, Oberholzer N, Jaermann T, Boesiger P, Brugger P, Regard M, Buck A, Savazzi S, Marzi CA (2005) Attention and interhemispheric transfer: a behavioral and fMRI study. J Cogn Neurosci 17:113–123PubMedCrossRef
22.
go back to reference D’Arcy RC, Hamilton A, Jarmasz M, Sullivan S, Stroink G (2006) Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging. Magn Reson Med 55:952–958PubMedCrossRef D’Arcy RC, Hamilton A, Jarmasz M, Sullivan S, Stroink G (2006) Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging. Magn Reson Med 55:952–958PubMedCrossRef
23.
go back to reference Baudewig J, Bohm J, Dechent P, Rothenberger A, Roessner V (2008) Interhemispheric transfer visualized by fMRI: Are there BOLD signal changes in white matter? In: Proceedings of the 14th Annual Meeting of the Organization for Human Brain Mapping, Melbourne, Australia: #618 Baudewig J, Bohm J, Dechent P, Rothenberger A, Roessner V (2008) Interhemispheric transfer visualized by fMRI: Are there BOLD signal changes in white matter? In: Proceedings of the 14th Annual Meeting of the Organization for Human Brain Mapping, Melbourne, Australia: #618
24.
go back to reference Mazerolle EL, D'Arcy RC, Beyea SD (2008) Detecting functional magnetic resonance imaging activation in white matter: interhemispheric transfer across the corpus callosum. BMC Neurosci 9:84 Mazerolle EL, D'Arcy RC, Beyea SD (2008) Detecting functional magnetic resonance imaging activation in white matter: interhemispheric transfer across the corpus callosum. BMC Neurosci 9:84
25.
go back to reference Gawryluk JR, Brewer KD, Beyea SD, D’Arcy RC (2009) Optimizing the detection of white matter fMRI using asymmetric spin echo spiral. Neuroimage 45:83–88PubMedCrossRef Gawryluk JR, Brewer KD, Beyea SD, D’Arcy RC (2009) Optimizing the detection of white matter fMRI using asymmetric spin echo spiral. Neuroimage 45:83–88PubMedCrossRef
26.
go back to reference Gawryluk JR, D'Arcy RC, Mazerolle EL, Brewer KD, Beyea SD (2011) Functional mapping in the corpus callosum: a 4 T fMRI study of white matter. Neuroimage 54:10–15PubMedCrossRef Gawryluk JR, D'Arcy RC, Mazerolle EL, Brewer KD, Beyea SD (2011) Functional mapping in the corpus callosum: a 4 T fMRI study of white matter. Neuroimage 54:10–15PubMedCrossRef
27.
go back to reference Fraser LM, Stevens MT, Beyea SD, D'Arcy RC (2012) White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude. BMC Neurosci 13:91 Fraser LM, Stevens MT, Beyea SD, D'Arcy RC (2012) White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude. BMC Neurosci 13:91
28.
go back to reference McWhinney SR, Mazerolle EL, Gawryluk JR, Beyea SD, D'Arcy RC (2012) Comparing gray and white matter fMRI activation using asymmetric spin echo spiral. J Neurosci Methods 209:351–356PubMedCrossRef McWhinney SR, Mazerolle EL, Gawryluk JR, Beyea SD, D'Arcy RC (2012) Comparing gray and white matter fMRI activation using asymmetric spin echo spiral. J Neurosci Methods 209:351–356PubMedCrossRef
29.
go back to reference Aramaki Y, Honda M, Okada T, Sadato N (2006) Neural correlates of the spontaneous phase transition during bimanual coordination. Cereb Cortex 16:1338–1348PubMedCrossRef Aramaki Y, Honda M, Okada T, Sadato N (2006) Neural correlates of the spontaneous phase transition during bimanual coordination. Cereb Cortex 16:1338–1348PubMedCrossRef
30.
go back to reference Newman AJ, Supalla T, Hauser P, Newport EL, Bavelier D (2010) Dissociating neural subsystems for grammar by contrasting word order and inflection. Proc Natl Acad Sci U S A 107:7539–7544PubMedCrossRefPubMedCentral Newman AJ, Supalla T, Hauser P, Newport EL, Bavelier D (2010) Dissociating neural subsystems for grammar by contrasting word order and inflection. Proc Natl Acad Sci U S A 107:7539–7544PubMedCrossRefPubMedCentral
31.
go back to reference Weis S, Leube D, Erb M, Heun R, Grodd W, Kircher T (2011) Functional neuroanatomy of sustained memory encoding performance in healthy aging and in Alzheimer's disease. Int J Neurosci 121:384–392PubMedCrossRef Weis S, Leube D, Erb M, Heun R, Grodd W, Kircher T (2011) Functional neuroanatomy of sustained memory encoding performance in healthy aging and in Alzheimer's disease. Int J Neurosci 121:384–392PubMedCrossRef
33.
go back to reference Goldstein B, Shulman A (1996) Tinnitus-hyperacusis and the loudness discomfort level test—a preliminary report. Int Tinnitus J 2:83–89PubMed Goldstein B, Shulman A (1996) Tinnitus-hyperacusis and the loudness discomfort level test—a preliminary report. Int Tinnitus J 2:83–89PubMed
34.
go back to reference Nam EC, Kim SS, Lee KU, Kim SS (2008) Development of sound measurement systems for auditory functional magnetic resonance imaging. Magn Reson Imaging 26:715–720PubMedCrossRef Nam EC, Kim SS, Lee KU, Kim SS (2008) Development of sound measurement systems for auditory functional magnetic resonance imaging. Magn Reson Imaging 26:715–720PubMedCrossRef
35.
go back to reference Duvernoy HM (1995) The human brain stem and cerebellum. Springer-Verlag, New York WienCrossRef Duvernoy HM (1995) The human brain stem and cerebellum. Springer-Verlag, New York WienCrossRef
36.
go back to reference Duvernoy HM (1999) The human brain. Surface, three-dimensional sectional anatomy with MRI, and blood supply. Springer-Verlag, New York Wien Duvernoy HM (1999) The human brain. Surface, three-dimensional sectional anatomy with MRI, and blood supply. Springer-Verlag, New York Wien
37.
go back to reference Harms MP, Melcher JR (2002) Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J Neurophysiol 88:1433–1450PubMed Harms MP, Melcher JR (2002) Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J Neurophysiol 88:1433–1450PubMed
38.
go back to reference Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93PubMedCrossRef Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93PubMedCrossRef
39.
go back to reference Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97PubMedCrossRef Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97PubMedCrossRef
40.
go back to reference Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223PubMedCrossRef Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223PubMedCrossRef
41.
go back to reference Funnell MG, Corballis PM, Gazzaniga MS (2000) Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol 57:185–189PubMedCrossRef Funnell MG, Corballis PM, Gazzaniga MS (2000) Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol 57:185–189PubMedCrossRef
42.
go back to reference Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994PubMedCrossRef Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994PubMedCrossRef
43.
go back to reference Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, Schroth G, Lovblad K, Dierks T (2004) Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 61:658–668PubMedCrossRef Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, Schroth G, Lovblad K, Dierks T (2004) Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 61:658–668PubMedCrossRef
44.
go back to reference David A, Cutting J (1994) The neuropsychology of auditory–verbal hallucinations. The neuropsychology of schizophrenia. Lawrence Erlbaum Associates, Hove, pp 269–312 David A, Cutting J (1994) The neuropsychology of auditory–verbal hallucinations. The neuropsychology of schizophrenia. Lawrence Erlbaum Associates, Hove, pp 269–312
45.
go back to reference Henshall KR, Sergejew AA, Rance G, McKay CM, Copolov DL (2013) Interhemispheric EEG coherence is reduced in auditory cortical regions in schizophrenia patients with auditory hallucinations. Int J Psychophysiol Henshall KR, Sergejew AA, Rance G, McKay CM, Copolov DL (2013) Interhemispheric EEG coherence is reduced in auditory cortical regions in schizophrenia patients with auditory hallucinations. Int J Psychophysiol
46.
go back to reference Zaidel E, Aboitiz F, Clarke J, Kaiser D, Matteson R (1995) Sex differences in interhemispheric relations for language. In: Kitterle F (ed) Hemispheric communication: mechanisms and models. Erlbaum, Hillsdale, NJ, pp 85–175 Zaidel E, Aboitiz F, Clarke J, Kaiser D, Matteson R (1995) Sex differences in interhemispheric relations for language. In: Kitterle F (ed) Hemispheric communication: mechanisms and models. Erlbaum, Hillsdale, NJ, pp 85–175
47.
go back to reference Clarke JM, Zaidel E (1994) Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behav Brain Res 64:185–202PubMedCrossRef Clarke JM, Zaidel E (1994) Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behav Brain Res 64:185–202PubMedCrossRef
48.
go back to reference Moffat SD, Hampson E, Lee DH (1998) Morphology of the planum temporale and corpus callosum in left handers with evidence of left and right hemisphere speech representation. Brain 121(Pt 12):2369–2379PubMedCrossRef Moffat SD, Hampson E, Lee DH (1998) Morphology of the planum temporale and corpus callosum in left handers with evidence of left and right hemisphere speech representation. Brain 121(Pt 12):2369–2379PubMedCrossRef
49.
go back to reference Tibbo P, Nopoulos P, Arndt S, Andreasen NC (1998) Corpus callosum shape and size in male patients with schizophrenia. Biol Psychiatry 44:405–412PubMedCrossRef Tibbo P, Nopoulos P, Arndt S, Andreasen NC (1998) Corpus callosum shape and size in male patients with schizophrenia. Biol Psychiatry 44:405–412PubMedCrossRef
50.
go back to reference Quigley M, Cordes D, Turski P, Moritz C, Haughton V, Seth R, Meyerand ME (2003) Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol 24:208–212PubMed Quigley M, Cordes D, Turski P, Moritz C, Haughton V, Seth R, Meyerand ME (2003) Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol 24:208–212PubMed
51.
go back to reference Sammler D, Kotz SA, Eckstein K, Ott DV, Friederici AD (2010) Prosody meets syntax: the role of the corpus callosum. Brain 133:2643–2655PubMedCrossRef Sammler D, Kotz SA, Eckstein K, Ott DV, Friederici AD (2010) Prosody meets syntax: the role of the corpus callosum. Brain 133:2643–2655PubMedCrossRef
52.
go back to reference Steinmann S, Mulert C (2012) Functional relevance of interhemispheric fiber tracts in speech processing. J Neurolinguistics 25:1–12CrossRef Steinmann S, Mulert C (2012) Functional relevance of interhemispheric fiber tracts in speech processing. J Neurolinguistics 25:1–12CrossRef
53.
go back to reference Barajas JJ (1982) Evaluation of ipsilateral and contralateral brainstem auditory evoked potentials in multiple sclerosis patients. J Neurol Sci 54:69–78PubMedCrossRef Barajas JJ (1982) Evaluation of ipsilateral and contralateral brainstem auditory evoked potentials in multiple sclerosis patients. J Neurol Sci 54:69–78PubMedCrossRef
54.
go back to reference Pantev C, Lutkenhoner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61PubMedCrossRef Pantev C, Lutkenhoner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61PubMedCrossRef
55.
go back to reference Gates GA (2009) Central auditory processing in presbycusis: an epidemiologic perspective. International Adult Conference: The Challenge of Aging:47–52 Gates GA (2009) Central auditory processing in presbycusis: an epidemiologic perspective. International Adult Conference: The Challenge of Aging:47–52
56.
go back to reference Huang BY, Roche JP, Buchman CA, Castillo M (2010) Brain stem and inner ear abnormalities in children with auditory neuropathy spectrum disorder and cochlear nerve deficiency. AJNR Am J Neuroradiol 31(10):1972–1979 Huang BY, Roche JP, Buchman CA, Castillo M (2010) Brain stem and inner ear abnormalities in children with auditory neuropathy spectrum disorder and cochlear nerve deficiency. AJNR Am J Neuroradiol 31(10):1972–1979
57.
go back to reference Roche JP, Huang BY, Castillo M, Bassim MK, Adunka OF, Buchman CA (2010) Imaging characteristics of children with auditory neuropathy spectrum disorder. Otol Neurotol 31:780–788PubMedCrossRefPubMedCentral Roche JP, Huang BY, Castillo M, Bassim MK, Adunka OF, Buchman CA (2010) Imaging characteristics of children with auditory neuropathy spectrum disorder. Otol Neurotol 31:780–788PubMedCrossRefPubMedCentral
58.
go back to reference Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500PubMedCrossRef Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500PubMedCrossRef
59.
go back to reference Sommer M, Koch MA, Paulus W, Weiller C, Büchel C (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360:380–383PubMedCrossRef Sommer M, Koch MA, Paulus W, Weiller C, Büchel C (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360:380–383PubMedCrossRef
60.
Metadata
Title
Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging
Authors
Woo Suk Tae
Natalia Yakunina
Tae Su Kim
Sam Soo Kim
Eui-Cheol Nam
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 7/2014
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-014-1362-y

Other articles of this Issue 7/2014

Neuroradiology 7/2014 Go to the issue