Skip to main content
Top
Published in: Neuroradiology 4/2011

01-04-2011 | Diagnostic Neuroradiology

Accuracy and reproducibility of a novel semi-automatic segmentation technique for MR volumetry of the pituitary gland

Authors: Diane M. Renz, Horst K. Hahn, Peter Schmidt, Jan Rexilius, Markus Lentschig, Alexander Pfeil, Dieter Sauner, Clemens Fitzek, Hans-Joachim Mentzel, Werner A. Kaiser, Jürgen R. Reichenbach, Joachim Böttcher

Published in: Neuroradiology | Issue 4/2011

Login to get access

Abstract

Introduction

Although several reports about volumetric determination of the pituitary gland exist, volumetries have been solely performed by indirect measurements or manual tracing on the gland’s boundaries. The purpose of this study was to evaluate the accuracy and reproducibility of a novel semi-automatic MR-based segmentation technique.

Methods

In an initial technical investigation, T1-weighted 3D native magnetised prepared rapid gradient echo sequences (1.5 T) with 1 mm isotropic voxel size achieved high reliability and were utilised in different in vitro and in vivo studies. The computer-assisted segmentation technique was based on an interactive watershed transform after resampling and gradient computation. Volumetry was performed by three observers with different software and neuroradiologic experiences, evaluating phantoms of known volume (0.3, 0.9 and 1.62 ml) and healthy subjects (26 to 38 years; overall 135 volumetries).

Results

High accuracy of the volumetry was shown by phantom analysis; measurement errors were <4% with a mean error of 2.2%. In vitro, reproducibility was also promising with intra-observer variability of 0.7% for observer 1 and 0.3% for observers 2 and 3; mean inter-observer variability was in vitro 1.2%. In vivo, scan–rescan, intra-observer and inter-observer variability showed mean values of 3.2%, 1.8% and 3.3%, respectively. Unifactorial analysis of variance demonstrated no significant differences between pituitary volumes for various MR scans or software calculations in the healthy study groups (p > 0.05).

Conclusion

The analysed semi-automatic MR volumetry of the pituitary gland is a valid, reliable and fast technique. Possible clinical applications are hyperplasia or atrophy of the gland in pathological circumstances either by a single assessment or by monitoring in follow-up studies.
Literature
4.
go back to reference Sanno N, Teramoto A, Osamura RY, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW (2003) Pathology of pituitary tumors. Neurosurg Clin N Am 14:25–39PubMedCrossRef Sanno N, Teramoto A, Osamura RY, Horvath E, Kovacs K, Lloyd RV, Scheithauer BW (2003) Pathology of pituitary tumors. Neurosurg Clin N Am 14:25–39PubMedCrossRef
5.
go back to reference Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14PubMed Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14PubMed
6.
go back to reference Syvertsen A, Haughton VM, Williams AL, Cusick JF (1979) The computed tomographic appearance of the normal pituitary gland and pituitary microadenomas. Radiology 133:385–391PubMed Syvertsen A, Haughton VM, Williams AL, Cusick JF (1979) The computed tomographic appearance of the normal pituitary gland and pituitary microadenomas. Radiology 133:385–391PubMed
7.
go back to reference Miki Y, Matsuo M, Nishizawa S, Kuroda Y, Keyaki A, Makita Y, Kawamura J (1990) Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 177:35–38PubMed Miki Y, Matsuo M, Nishizawa S, Kuroda Y, Keyaki A, Makita Y, Kawamura J (1990) Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 177:35–38PubMed
8.
9.
go back to reference Miki Y, Kanagaki M, Takahashi JA, Ishizu K, Nakagawa M, Yamamoto A, Fushimi Y, Okada T, Mikuni N, Kikuta K, Hashimoto N, Togashi K (2007) Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging. Neuroradiology 49:327–333. doi:10.1007/s00234-006-0194-9 PubMedCrossRef Miki Y, Kanagaki M, Takahashi JA, Ishizu K, Nakagawa M, Yamamoto A, Fushimi Y, Okada T, Mikuni N, Kikuta K, Hashimoto N, Togashi K (2007) Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging. Neuroradiology 49:327–333. doi:10.​1007/​s00234-006-0194-9 PubMedCrossRef
10.
go back to reference Lurie SN, Doraiswamy PM, Husain MM, Boyko OB, Ellinwood EH Jr, Figiel GS, Krishnan KRR (1990) In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab 71:505–508. doi:10.1210/jcem-71-2-505 PubMedCrossRef Lurie SN, Doraiswamy PM, Husain MM, Boyko OB, Ellinwood EH Jr, Figiel GS, Krishnan KRR (1990) In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab 71:505–508. doi:10.​1210/​jcem-71-2-505 PubMedCrossRef
11.
go back to reference Marziali S, Gaudiello F, Bozzao A, Scirè G, Ferone E, Colangelo V, Simonetti A, Boscherini B, Floris R, Simonetti G (2004) Evaluation of anterior pituitary gland volume in childhood using three-dimensional MRI. Pediatr Radiol 34:547–551. doi:10.1007/s00247-004-1208-6 PubMedCrossRef Marziali S, Gaudiello F, Bozzao A, Scirè G, Ferone E, Colangelo V, Simonetti A, Boscherini B, Floris R, Simonetti G (2004) Evaluation of anterior pituitary gland volume in childhood using three-dimensional MRI. Pediatr Radiol 34:547–551. doi:10.​1007/​s00247-004-1208-6 PubMedCrossRef
12.
go back to reference Takano K, Utsunomiya H, Ono H, Ohfu M, Okazaki M (1999) Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR Am J Neuroradiol 20:312–315PubMed Takano K, Utsunomiya H, Ono H, Ohfu M, Okazaki M (1999) Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR Am J Neuroradiol 20:312–315PubMed
13.
go back to reference Elster AD, Sanders TG, Vines FS, Chen MY (1991) Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 181:531–535PubMed Elster AD, Sanders TG, Vines FS, Chen MY (1991) Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 181:531–535PubMed
14.
go back to reference Miki Y, Kataoka ML, Shibata T, Haque TL, Kanagaki M, Shimono T, Okada T, Hiraga A, Nishizawa S, Ueda H, Rahman M, Konishi J (2005) The pituitary gland: changes on MR images during the 1st year after delivery. Radiology 235:999–1004. doi:10.1148/radiol.2353040243 PubMedCrossRef Miki Y, Kataoka ML, Shibata T, Haque TL, Kanagaki M, Shimono T, Okada T, Hiraga A, Nishizawa S, Ueda H, Rahman M, Konishi J (2005) The pituitary gland: changes on MR images during the 1st year after delivery. Radiology 235:999–1004. doi:10.​1148/​radiol.​2353040243 PubMedCrossRef
15.
go back to reference Sharafuddin MJ, Luisiri A, Garibaldi LR, Fulk DL, Klein JB, Gillespie KN, Graviss ER (1994) MR imaging diagnosis of central precocious puberty: importance of changes in the shape and size of the pituitary gland. AJR Am J Roentgenol 162:1167–1173PubMed Sharafuddin MJ, Luisiri A, Garibaldi LR, Fulk DL, Klein JB, Gillespie KN, Graviss ER (1994) MR imaging diagnosis of central precocious puberty: importance of changes in the shape and size of the pituitary gland. AJR Am J Roentgenol 162:1167–1173PubMed
16.
go back to reference McLachlan MS, Williams ED, Fortt RW, Doyle FH (1968) Estimation of pituitary gland dimensions from radiographs of the sella turcica. A post-mortem study. Br J Radiol 41:323–330PubMedCrossRef McLachlan MS, Williams ED, Fortt RW, Doyle FH (1968) Estimation of pituitary gland dimensions from radiographs of the sella turcica. A post-mortem study. Br J Radiol 41:323–330PubMedCrossRef
17.
go back to reference Peyster RG, Hoover ED, Viscarello RR, Moshang T, Haskin ME (1983) CT appearance of the adolescent and preadolescent pituitary gland. AJNR Am J Neuroradiol 4:411–414PubMed Peyster RG, Hoover ED, Viscarello RR, Moshang T, Haskin ME (1983) CT appearance of the adolescent and preadolescent pituitary gland. AJNR Am J Neuroradiol 4:411–414PubMed
19.
go back to reference Schwartz PJ, Loe JA, Bash CN, Bove K, Turner EH, Frank JA, Wehr TA, Rosenthal NE (1997) Seasonality and pituitary volume. Psychiatry Res 74:151–157PubMedCrossRef Schwartz PJ, Loe JA, Bash CN, Bove K, Turner EH, Frank JA, Wehr TA, Rosenthal NE (1997) Seasonality and pituitary volume. Psychiatry Res 74:151–157PubMedCrossRef
20.
go back to reference Hahn HK, Peitgen HO (2003) IWT—interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images. Proc Medical Imaging SPIE 5032:643–653 Hahn HK, Peitgen HO (2003) IWT—interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images. Proc Medical Imaging SPIE 5032:643–653
21.
go back to reference Hahn HK (2005) Morphological volumetry. Theory, concepts, and application to quantitative medical imaging. Dissertation, University of Bremen, Germany Hahn HK (2005) Morphological volumetry. Theory, concepts, and application to quantitative medical imaging. Dissertation, University of Bremen, Germany
22.
go back to reference Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7:1684–1699PubMedCrossRef Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7:1684–1699PubMedCrossRef
23.
go back to reference Lukas C, Hahn HK, Bellenberg B, Rexilius J, Schmid G, Schimrigk SK, Przuntek H, Köster O, Peitgen HO (2004) Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis. Neuroradiology 46:906–915. doi:10.1007/s00234-004-1282-3 PubMedCrossRef Lukas C, Hahn HK, Bellenberg B, Rexilius J, Schmid G, Schimrigk SK, Przuntek H, Köster O, Peitgen HO (2004) Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis. Neuroradiology 46:906–915. doi:10.​1007/​s00234-004-1282-3 PubMedCrossRef
24.
go back to reference Hahn HK, Millar WS, Klinghammer O, Durkin MS, Tulipano PK, Peitgen HO (2004) A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Meth Inf Med 43:376–382 Hahn HK, Millar WS, Klinghammer O, Durkin MS, Tulipano PK, Peitgen HO (2004) A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Meth Inf Med 43:376–382
25.
go back to reference Giesel FL, Hahn HK, Thomann PA, Widjaja E, Wignall E, von Tengg-Kobligk H, Pantel J, Griffiths PD, Peitgen HO, Schroder J, Essig M (2006) Temporal horn index and volume of medial temporal lobe atrophy using a new semiautomated method for rapid and precise assessment. AJNR Am J Neuroradiol 27:1454–1458PubMed Giesel FL, Hahn HK, Thomann PA, Widjaja E, Wignall E, von Tengg-Kobligk H, Pantel J, Griffiths PD, Peitgen HO, Schroder J, Essig M (2006) Temporal horn index and volume of medial temporal lobe atrophy using a new semiautomated method for rapid and precise assessment. AJNR Am J Neuroradiol 27:1454–1458PubMed
26.
go back to reference Moul DE, Wehr TA, Frank JA (1995) Possible seasonal changes in pituitary size. AJNR Am J Neuroradiol 16:214–215PubMed Moul DE, Wehr TA, Frank JA (1995) Possible seasonal changes in pituitary size. AJNR Am J Neuroradiol 16:214–215PubMed
27.
go back to reference Mueller CA, Scorzin J, Koenig R, Urbach H, Fimmers R, Zentner J, Lehmann TN, Schramm J (2007) Comparison of manual tracing versus a semiautomatic radial measurement method in temporal lobe MRI volumetry for pharmacoresistant epilepsy. Neuroradiology 49:189–201. doi:10.1007/s00234-006-0171-3 PubMedCrossRef Mueller CA, Scorzin J, Koenig R, Urbach H, Fimmers R, Zentner J, Lehmann TN, Schramm J (2007) Comparison of manual tracing versus a semiautomatic radial measurement method in temporal lobe MRI volumetry for pharmacoresistant epilepsy. Neuroradiology 49:189–201. doi:10.​1007/​s00234-006-0171-3 PubMedCrossRef
28.
go back to reference Tae WS, Kim SS, Lee KU, Nam EC, Kim KW (2008) Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50:569–581. doi:10.1007/s00234-008-0383-9 PubMedCrossRef Tae WS, Kim SS, Lee KU, Nam EC, Kim KW (2008) Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50:569–581. doi:10.​1007/​s00234-008-0383-9 PubMedCrossRef
29.
go back to reference Benesch H, Felber SR, Finkenstedt G, Kremser C, Stockhammer G, Aichner FT (1995) MR volumetry for monitoring intramuscular bromocriptine treatment in macroprolactinomas. J Comput Assist Tomogr 19:866–870PubMedCrossRef Benesch H, Felber SR, Finkenstedt G, Kremser C, Stockhammer G, Aichner FT (1995) MR volumetry for monitoring intramuscular bromocriptine treatment in macroprolactinomas. J Comput Assist Tomogr 19:866–870PubMedCrossRef
31.
go back to reference Rao VM, Vinitski S, Babaria A, Flanders A, Mishkin MM, Gonzalez C (1991) Enhanced resolution of pituitary fossa by three-dimensional fat-suppressed gradient-echo magnetic resonance: before and after gadolinium enhancement. J Neuroimaging 1:95–99PubMed Rao VM, Vinitski S, Babaria A, Flanders A, Mishkin MM, Gonzalez C (1991) Enhanced resolution of pituitary fossa by three-dimensional fat-suppressed gradient-echo magnetic resonance: before and after gadolinium enhancement. J Neuroimaging 1:95–99PubMed
33.
go back to reference Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S (2003) Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging 17:300–308. doi:10.1002/jmri.10258 PubMedCrossRef Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S (2003) Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging 17:300–308. doi:10.​1002/​jmri.​10258 PubMedCrossRef
34.
go back to reference Joe BN, Fukui MB, Meltzer CC, Huang QS, Day RS, Greer PJ, Bozik ME (1999) Brain tumor volume measurement: comparison of manual and semiautomated methods. Radiology 212:811–816PubMed Joe BN, Fukui MB, Meltzer CC, Huang QS, Day RS, Greer PJ, Bozik ME (1999) Brain tumor volume measurement: comparison of manual and semiautomated methods. Radiology 212:811–816PubMed
35.
go back to reference Jack CR Jr, Bentley MD, Twomey CK, Zinsmeister AR (1990) MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 176:205–209PubMed Jack CR Jr, Bentley MD, Twomey CK, Zinsmeister AR (1990) MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 176:205–209PubMed
36.
go back to reference Kiortsis D, Xydis V, Drougia AG, Argyropoulou PI, Andronikou S, Efremidis SC, Argyropoulou MI (2004) The height of the pituitary in preterm infants during the first 2 years of life: an MRI study. Neuroradiology 46:224–256. doi:10.1007/s00234-003-1126-6 PubMedCrossRef Kiortsis D, Xydis V, Drougia AG, Argyropoulou PI, Andronikou S, Efremidis SC, Argyropoulou MI (2004) The height of the pituitary in preterm infants during the first 2 years of life: an MRI study. Neuroradiology 46:224–256. doi:10.​1007/​s00234-003-1126-6 PubMedCrossRef
37.
go back to reference Shimono T, Hatabu H, Kasagi K, Miki Y, Nishizawa S, Misaki T, Hiraga A, Konishi J (1999) Rapid progression of pituitary hyperplasia in humans with primary hypothyroidism: demonstration with MR imaging. Radiology 213:383–388PubMed Shimono T, Hatabu H, Kasagi K, Miki Y, Nishizawa S, Misaki T, Hiraga A, Konishi J (1999) Rapid progression of pituitary hyperplasia in humans with primary hypothyroidism: demonstration with MR imaging. Radiology 213:383–388PubMed
38.
go back to reference Doraiswamy PM, Krishnan KR, Figiel GS, Husain MM, Boyko OB, Rockwell WJ, Ellinwood EH Jr (1990) A brain magnetic resonance imaging study of pituitary gland morphology in anorexia nervosa and bulimia. Biol Psychiatry 28:110–116PubMedCrossRef Doraiswamy PM, Krishnan KR, Figiel GS, Husain MM, Boyko OB, Rockwell WJ, Ellinwood EH Jr (1990) A brain magnetic resonance imaging study of pituitary gland morphology in anorexia nervosa and bulimia. Biol Psychiatry 28:110–116PubMedCrossRef
39.
go back to reference Argyropoulou MI, Xydis V, Kiortsis DN, Pantou K, Zikou A, Efremidis SC, Andronikou S (2004) Pituitary gland signal in pre-term infants during the first year of life: an MRI study. Neuroradiology 46:1031–1035. doi:10.1007/s00234-004-1285-0 PubMedCrossRef Argyropoulou MI, Xydis V, Kiortsis DN, Pantou K, Zikou A, Efremidis SC, Andronikou S (2004) Pituitary gland signal in pre-term infants during the first year of life: an MRI study. Neuroradiology 46:1031–1035. doi:10.​1007/​s00234-004-1285-0 PubMedCrossRef
40.
go back to reference Pickett CA (2005) Update on the medical management of pituitary adenomas. Curr Neurol Neurosci Rep 5:178–185PubMedCrossRef Pickett CA (2005) Update on the medical management of pituitary adenomas. Curr Neurol Neurosci Rep 5:178–185PubMedCrossRef
41.
go back to reference Yoon PH, Kim DI, Jeon P, Lee SI, Lee SK, Kim SH (2001) Pituitary adenomas: early postoperative MR imaging after transsphenoidal resection. AJNR Am J Neuroradiol 22:1097–1104PubMed Yoon PH, Kim DI, Jeon P, Lee SI, Lee SK, Kim SH (2001) Pituitary adenomas: early postoperative MR imaging after transsphenoidal resection. AJNR Am J Neuroradiol 22:1097–1104PubMed
Metadata
Title
Accuracy and reproducibility of a novel semi-automatic segmentation technique for MR volumetry of the pituitary gland
Authors
Diane M. Renz
Horst K. Hahn
Peter Schmidt
Jan Rexilius
Markus Lentschig
Alexander Pfeil
Dieter Sauner
Clemens Fitzek
Hans-Joachim Mentzel
Werner A. Kaiser
Jürgen R. Reichenbach
Joachim Böttcher
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 4/2011
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-010-0727-0

Other articles of this Issue 4/2011

Neuroradiology 4/2011 Go to the issue