Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 3/2006

01-03-2006 | Original Article

Accelerator mass spectrometry allows for cellular quantification of doxorubicin at femtomolar concentrations

Authors: M. W. DeGregorio, K. H. Dingley, G. T. Wurz, E. Ubick, K. W. Turteltaub

Published in: Cancer Chemotherapy and Pharmacology | Issue 3/2006

Login to get access

Abstract

Accelerator mass spectrometry (AMS) is a highly sensitive analytical methodology used to quantify the content of radioisotopes, such as 14C, in a sample. The primary goals of this work were to demonstrate the utility of AMS in determining total cellular [14C]anthracycline concentrations following administration of doxorubicin (DOX) and to develop a sensitive assay that is superior to high performance liquid chromatography (HPLC) for the quantification of [14C]anthracycline at the tumor level. In order to validate the sensitivity of AMS versus HPLC with fluorescence detection, we performed three studies comparing the cellular accumulation of DOX: one in vitro cell line study, and two in vivo xenograft mouse studies. Using AMS, we quantified cellular [14C]anthracycline content up to 4 h following in vitro exposure at concentrations ranging from 0.2 pg/ml (345 fM) to 2 μg/ml (3.45 μM) [14C]DOX. The results of this study show that, compared to standard fluorescence-based HPLC, the AMS method was over five orders of magnitude more sensitive. Two in vivo studies compared the sensitivity of AMS to HPLC using a nude mouse xenograft model in which breast cancer cells were implanted subcutaneously. After sufficiently large tumors formed, [14C]DOX was administered intravenously at two dose levels. Additionally, we tested the AMS method in a nude mouse xenograft model of multidrug resistance (MDR) in which each mouse was implanted with both wild type and MDR+ cells on opposite flanks. The results of the second and third studies showed that [14C]anthracycline concentrations were significantly higher in the wild type tumors compared to the MDR+ tumors, consistent with the MDR model. Although this method does not discriminate between parent drug and metabolites, the extreme sensitivity of AMS should facilitate similar studies in humans to establish target site drug delivery and to potentially determine the optimal treatment dose and regimen.
Literature
1.
go back to reference Anderson AB, Ciriacks CM, Fuller KM, Arriaga EA (2003) Distribution of zeptomole-abundant doxorubicin metabolites in subcellular fractions by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 75(1):8–15PubMedCrossRef Anderson AB, Ciriacks CM, Fuller KM, Arriaga EA (2003) Distribution of zeptomole-abundant doxorubicin metabolites in subcellular fractions by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 75(1):8–15PubMedCrossRef
2.
go back to reference Anderson AB, Gergen J, Arriaga EA (2002) Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 769:97–106CrossRef Anderson AB, Gergen J, Arriaga EA (2002) Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 769:97–106CrossRef
3.
go back to reference Baker WJ, Mäenpää JU, Wurz GT, Koester SK, Seymour RC, Emshoff VD, Wiebe VJ, DeGregorio MW (1993) Toremifene enhances cell cycle block and growth inhibition by vinblastine in multidrug resistant human breast cancer cells. Oncol Res 5(6–7):207–212PubMed Baker WJ, Mäenpää JU, Wurz GT, Koester SK, Seymour RC, Emshoff VD, Wiebe VJ, DeGregorio MW (1993) Toremifene enhances cell cycle block and growth inhibition by vinblastine in multidrug resistant human breast cancer cells. Oncol Res 5(6–7):207–212PubMed
4.
go back to reference Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47(3):381–389CrossRefPubMed Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47(3):381–389CrossRefPubMed
5.
go back to reference Citro G, Verdina A, Galati R, Floridi A (1988) Quantitation of adriamycin content by a sensitive immunochemical assay. Anticancer Res 8:549–552PubMed Citro G, Verdina A, Galati R, Floridi A (1988) Quantitation of adriamycin content by a sensitive immunochemical assay. Anticancer Res 8:549–552PubMed
6.
go back to reference Cupid BC, Lightfoot TJ, Russell D, Gant SJ, Turner PC, Dingley KH, Curtis KD, Leveson SH, Turteltaub KW, Garner RC (2004) The formation of AFB(1)-macromolecular adducts in rats and humans at dietary levels of exposure. Food Chem Toxicol 42(4):559–569PubMedCrossRef Cupid BC, Lightfoot TJ, Russell D, Gant SJ, Turner PC, Dingley KH, Curtis KD, Leveson SH, Turteltaub KW, Garner RC (2004) The formation of AFB(1)-macromolecular adducts in rats and humans at dietary levels of exposure. Food Chem Toxicol 42(4):559–569PubMedCrossRef
7.
go back to reference de Bruijn P, Verweij J, Loos WJ, Kolker HJ, Planting AS, Nooter K, Stoter G, Sparreboom A (2003) Determination of doxorubicin and doxorubicinol in plasma of cancer patients by high-performance liquid chromatography. Anal Biochem 266(2):216–221CrossRef de Bruijn P, Verweij J, Loos WJ, Kolker HJ, Planting AS, Nooter K, Stoter G, Sparreboom A (2003) Determination of doxorubicin and doxorubicinol in plasma of cancer patients by high-performance liquid chromatography. Anal Biochem 266(2):216–221CrossRef
8.
go back to reference Gavenda A, Sevcik J, Psotova J, Bednar P, Bartak P, Adamovsky P, Simanek V (2001) Determination of anthracycline antibiotics doxorubicin and daunorubicin by capillary electrophoresis with UV absorption detection. Electrophoresis 22:2782–2785PubMedCrossRef Gavenda A, Sevcik J, Psotova J, Bednar P, Bartak P, Adamovsky P, Simanek V (2001) Determination of anthracycline antibiotics doxorubicin and daunorubicin by capillary electrophoresis with UV absorption detection. Electrophoresis 22:2782–2785PubMedCrossRef
9.
go back to reference Gottesman M, Fojo T, Bates S (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58CrossRefPubMed Gottesman M, Fojo T, Bates S (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58CrossRefPubMed
10.
go back to reference Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427CrossRefPubMed Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427CrossRefPubMed
11.
go back to reference Hempel G, Haberland S, Schulze-Westhoff P, Mohling N, Blaschke G, Boos J (1997) Determination of idarubicin and idarubicinol in plasma by capillary electrophoresis. J Chromatogr B 698:287–292CrossRef Hempel G, Haberland S, Schulze-Westhoff P, Mohling N, Blaschke G, Boos J (1997) Determination of idarubicin and idarubicinol in plasma by capillary electrophoresis. J Chromatogr B 698:287–292CrossRef
12.
go back to reference Lachatre F, Marquet P, Ragot S, Gaulier JM, Cardot P, Dupuy JL (2000) Simultaneous determination of four anthracyclines and three metabolites in human serum by liquid chromatography-electrospray mass spectrometry. J Chromatogr B 738:281–291CrossRef Lachatre F, Marquet P, Ragot S, Gaulier JM, Cardot P, Dupuy JL (2000) Simultaneous determination of four anthracyclines and three metabolites in human serum by liquid chromatography-electrospray mass spectrometry. J Chromatogr B 738:281–291CrossRef
13.
go back to reference Lewis JS, Dearling JL, Sosabowski JK, Zweit J, Carnochan P, Kelland LR, Coley HM, Blower PJ (2000) Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multidrug resistance in tumours by PET. Eur J Nucl Med 27(6):638–646PubMedCrossRef Lewis JS, Dearling JL, Sosabowski JK, Zweit J, Carnochan P, Kelland LR, Coley HM, Blower PJ (2000) Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multidrug resistance in tumours by PET. Eur J Nucl Med 27(6):638–646PubMedCrossRef
14.
go back to reference Maxwell RJ (1993) New techniques in the pharmacokinetic analysis of cancer drugs. III. Nuclear magnetic resonance. Cancer Surv 17:415–423PubMed Maxwell RJ (1993) New techniques in the pharmacokinetic analysis of cancer drugs. III. Nuclear magnetic resonance. Cancer Surv 17:415–423PubMed
15.
go back to reference Ognibene TJ, Bench G, Brown TA, Peaslee GF, Vogel JS (2002) A new accelerator mass spectrometry system for 14C-quantification of biochemical samples. Int J Mass Spectrom 218:255–264CrossRef Ognibene TJ, Bench G, Brown TA, Peaslee GF, Vogel JS (2002) A new accelerator mass spectrometry system for 14C-quantification of biochemical samples. Int J Mass Spectrom 218:255–264CrossRef
16.
go back to reference Ognibene TJ, Bench G, Vogel JS, Peaslee GF, Murov S (2003) A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Anal Chem 75:2192–2196PubMedCrossRef Ognibene TJ, Bench G, Vogel JS, Peaslee GF, Murov S (2003) A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Anal Chem 75:2192–2196PubMedCrossRef
17.
go back to reference Perez-Ruiz T, Martinez-Lozano C, Sanz A, Bravo E (2001) Simultaneous determination of doxorubicin, danorubicin and iadrubicin by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 22:134–138CrossRefPubMed Perez-Ruiz T, Martinez-Lozano C, Sanz A, Bravo E (2001) Simultaneous determination of doxorubicin, danorubicin and iadrubicin by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 22:134–138CrossRefPubMed
18.
go back to reference Port R, Hanisch F, Becker M, Bachert P, Zeller J (1999) Local disposition kinetics of floxuridine after intratumoral and subcutaneous injection as monitored by [19F]-nuclear magnetic resonance spectroscopy in vivo. Cancer Chemother Pharmacol 44(1):65–73PubMedCrossRef Port R, Hanisch F, Becker M, Bachert P, Zeller J (1999) Local disposition kinetics of floxuridine after intratumoral and subcutaneous injection as monitored by [19F]-nuclear magnetic resonance spectroscopy in vivo. Cancer Chemother Pharmacol 44(1):65–73PubMedCrossRef
19.
go back to reference Reinhoud NJ, Tjaden UR, Irth H, van der Greef J (1992) Bioanalysis of some anthracyclines in human plasma by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr Biomed Appl 574:327–334CrossRef Reinhoud NJ, Tjaden UR, Irth H, van der Greef J (1992) Bioanalysis of some anthracyclines in human plasma by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr Biomed Appl 574:327–334CrossRef
20.
go back to reference Sharma V, Beatty A, Wey S-P, Dahlheimer J, Pica CM, Crankshaw CL, Bass L, Green MA, Welch MJ, Piwnica-Worms D (2000) Novel gallium(III) complexes transported by MDR1 p-glycoprotein: potential PET imaging agents for probing p-glycoprotein-mediated transport activity in vivo. Chem Biol 7(5):335–343CrossRefPubMed Sharma V, Beatty A, Wey S-P, Dahlheimer J, Pica CM, Crankshaw CL, Bass L, Green MA, Welch MJ, Piwnica-Worms D (2000) Novel gallium(III) complexes transported by MDR1 p-glycoprotein: potential PET imaging agents for probing p-glycoprotein-mediated transport activity in vivo. Chem Biol 7(5):335–343CrossRefPubMed
21.
go back to reference Sharma V (2004) Radiopharmaceuticals for assessment of multidrug resistance p-glycoprotein-mediated drug transport activity. Bioconjugate Chem 15(6):1464–1474CrossRef Sharma V (2004) Radiopharmaceuticals for assessment of multidrug resistance p-glycoprotein-mediated drug transport activity. Bioconjugate Chem 15(6):1464–1474CrossRef
22.
go back to reference Simeon N, Chatelut E, Canal P, Nertz M, Couderc F (1999) Anthracycline analysis by capillary electrophoresis: application to the analysis of daunorubicine in Kaposi sarcoma tumor. J Chromatogr A 853:449–454PubMedCrossRef Simeon N, Chatelut E, Canal P, Nertz M, Couderc F (1999) Anthracycline analysis by capillary electrophoresis: application to the analysis of daunorubicine in Kaposi sarcoma tumor. J Chromatogr A 853:449–454PubMedCrossRef
23.
go back to reference Tilsley DW, Harte RJ, Jones T, Brady F, Luthra SK, Brown G, Price PM (1993) New techniques in the pharmacokinetic analysis of cancer drugs. IV. Positron emission tomography. Cancer Surv 17:425–442PubMed Tilsley DW, Harte RJ, Jones T, Brady F, Luthra SK, Brown G, Price PM (1993) New techniques in the pharmacokinetic analysis of cancer drugs. IV. Positron emission tomography. Cancer Surv 17:425–442PubMed
24.
go back to reference Turteltaub KW, Vogel JS (2000) Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research. Curr Pharm Des 6:991–1007PubMedCrossRef Turteltaub KW, Vogel JS (2000) Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research. Curr Pharm Des 6:991–1007PubMedCrossRef
25.
go back to reference Turteltaub KW, Dingley KH, Curtis KD, Malfatti MA, Turesky RJ, Garner RC, Felton JS, Lang NP (1999) Macromolecular adduct formation and metabolism of heterocyclic amines in humans and rodents at low doses. Cancer Lett 143(2):149–155CrossRefPubMed Turteltaub KW, Dingley KH, Curtis KD, Malfatti MA, Turesky RJ, Garner RC, Felton JS, Lang NP (1999) Macromolecular adduct formation and metabolism of heterocyclic amines in humans and rodents at low doses. Cancer Lett 143(2):149–155CrossRefPubMed
26.
go back to reference Vogel JS (1992) Rapid production of graphite without contamination for biomedical AMS. Radiocarbon 34:344–350 Vogel JS (1992) Rapid production of graphite without contamination for biomedical AMS. Radiocarbon 34:344–350
27.
go back to reference Wiebe V, Koester S, Lindberg M, Emshoff V, Baker J, Wurz G, DeGregorio M (1992) Toremifene and its metabolites enhance doxorubicin accumulation in estrogen receptor negative multidrug resistant human breast cancer cells. Investig New Drugs 10:63–71CrossRef Wiebe V, Koester S, Lindberg M, Emshoff V, Baker J, Wurz G, DeGregorio M (1992) Toremifene and its metabolites enhance doxorubicin accumulation in estrogen receptor negative multidrug resistant human breast cancer cells. Investig New Drugs 10:63–71CrossRef
Metadata
Title
Accelerator mass spectrometry allows for cellular quantification of doxorubicin at femtomolar concentrations
Authors
M. W. DeGregorio
K. H. Dingley
G. T. Wurz
E. Ubick
K. W. Turteltaub
Publication date
01-03-2006
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 3/2006
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-005-0060-1

Other articles of this Issue 3/2006

Cancer Chemotherapy and Pharmacology 3/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine