Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2008

Open Access 01-12-2008 | Research

Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern

Authors: Nathan D Neckel, Natalie Blonien, Diane Nichols, Joseph Hidler

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2008

Login to get access

Abstract

Background

It is well documented that individuals with chronic stroke often exhibit considerable gait impairments that significantly impact their quality of life. While stroke subjects often walk asymmetrically, we sought to investigate whether prescribing near normal physiological gait patterns with the use of the Lokomat robotic gait-orthosis could help ameliorate asymmetries in gait, specifically, promote similar ankle, knee, and hip joint torques in both lower extremities. We hypothesized that hemiparetic stroke subjects would demonstrate significant differences in total joint torques in both the frontal and sagittal planes compared to non-disabled subjects despite walking under normal gait kinematic trajectories.

Methods

A motion analysis system was used to track the kinematic patterns of the pelvis and legs of 10 chronic hemiparetic stroke subjects and 5 age matched controls as they walked in the Lokomat. The subject's legs were attached to the Lokomat using instrumented shank and thigh cuffs while instrumented footlifters were applied to the impaired foot of stroke subjects to aid with foot clearance during swing. With minimal body-weight support, subjects walked at 2.5 km/hr on an instrumented treadmill capable of measuring ground reaction forces. Through a custom inverse dynamics model, the ankle, knee, and hip joint torques were calculated in both the frontal and sagittal planes. A single factor ANOVA was used to investigate differences in joint torques between control, unimpaired, and impaired legs at various points in the gait cycle.

Results

While the kinematic patterns of the stroke subjects were quite similar to those of the control subjects, the kinetic patterns were very different. During stance phase, the unimpaired limb of stroke subjects produced greater hip extension and knee flexion torques than the control group. At pre-swing, stroke subjects inappropriately extended their impaired knee, while during swing they tended to abduct their impaired leg, both being typical abnormal torque synergy patterns common to stroke gait.

Conclusion

Despite the Lokomat guiding stroke subjects through physiologically symmetric kinematic gait patterns, abnormal asymmetric joint torque patterns are still generated. These differences from the control group are characteristic of the hip hike and circumduction strategy employed by stroke subjects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bourbonnais D, Noven Vanden S: Weakness in patients with hemiparesis. Am J Occup Ther. 1989, 43 (5): 313-9.CrossRefPubMed Bourbonnais D, Noven Vanden S: Weakness in patients with hemiparesis. Am J Occup Ther. 1989, 43 (5): 313-9.CrossRefPubMed
2.
go back to reference Duncan PW, Badke MB: Stroke Rehabilitation: The Recovery of Motor Control. 1987, Chicago: Year Book Medical Pub Duncan PW, Badke MB: Stroke Rehabilitation: The Recovery of Motor Control. 1987, Chicago: Year Book Medical Pub
3.
go back to reference Neckel N, Pelliccio M, Nichols D, Hidler J: Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke. J Neuroeng Rehabil. 2006, 3: 17-PubMedCentralCrossRefPubMed Neckel N, Pelliccio M, Nichols D, Hidler J: Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke. J Neuroeng Rehabil. 2006, 3: 17-PubMedCentralCrossRefPubMed
4.
go back to reference Hidler JM, Carroll M, Federovich EH: Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (4): 526-34.CrossRefPubMed Hidler JM, Carroll M, Federovich EH: Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (4): 526-34.CrossRefPubMed
5.
go back to reference Chung SG, Van Rey E, Bai Z, Roth EJ, Zhang LQ: Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehabil. 2004, 85 (10): 1638-46.CrossRefPubMed Chung SG, Van Rey E, Bai Z, Roth EJ, Zhang LQ: Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Arch Phys Med Rehabil. 2004, 85 (10): 1638-46.CrossRefPubMed
6.
go back to reference Corcos DM, Gottlieb GL, Penn RD, Myklebust B, Agarwal GC: Movement deficits caused by hyperexcitable stretch reflexes in spastic humans. Brain. 1986, 109 (Pt 5): 1043-58.CrossRefPubMed Corcos DM, Gottlieb GL, Penn RD, Myklebust B, Agarwal GC: Movement deficits caused by hyperexcitable stretch reflexes in spastic humans. Brain. 1986, 109 (Pt 5): 1043-58.CrossRefPubMed
7.
go back to reference Bobath B: Adult Hemiplegia: Evaluation and Treatment. 1978, London: William Heinnemann Bobath B: Adult Hemiplegia: Evaluation and Treatment. 1978, London: William Heinnemann
8.
go back to reference Black I, Nichols D, Pelliccio M, Hidler J: Quantification of reflex activity in stroke survivors during an imposed multi-joint leg extension movement. Exp Brain Res. 2007, 183 (2): 271-81.CrossRefPubMed Black I, Nichols D, Pelliccio M, Hidler J: Quantification of reflex activity in stroke survivors during an imposed multi-joint leg extension movement. Exp Brain Res. 2007, 183 (2): 271-81.CrossRefPubMed
9.
go back to reference Knuttson E, Richards C: Different types of disturbed motor control in gait of hemiparetic patients. Brain. 1979, 102: 405-430.CrossRef Knuttson E, Richards C: Different types of disturbed motor control in gait of hemiparetic patients. Brain. 1979, 102: 405-430.CrossRef
10.
go back to reference Knutsson E, Martensson A: Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation. Scand J Rehabil Med. 1980, 12 (3): 93-106.PubMed Knutsson E, Martensson A: Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation. Scand J Rehabil Med. 1980, 12 (3): 93-106.PubMed
11.
go back to reference Chae J, Yu DT: Neuromuscular electrical stimulation for motor restoration in hemiparesis. Top Stroke Rehabil. 2002, 8 (4): 24-39.CrossRefPubMed Chae J, Yu DT: Neuromuscular electrical stimulation for motor restoration in hemiparesis. Top Stroke Rehabil. 2002, 8 (4): 24-39.CrossRefPubMed
12.
go back to reference Dean CM, Richards CL, Malouin F: Walking speed over 10 metres overestimates locomotor capacity after stroke. Clin Rehabil. 2001, 15: 415-421.CrossRefPubMed Dean CM, Richards CL, Malouin F: Walking speed over 10 metres overestimates locomotor capacity after stroke. Clin Rehabil. 2001, 15: 415-421.CrossRefPubMed
13.
go back to reference Von Schroeder HP, Coutts RD, Lyden PD, Billings E: Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995, 32: 25-31.PubMed Von Schroeder HP, Coutts RD, Lyden PD, Billings E: Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995, 32: 25-31.PubMed
14.
go back to reference Olney SJ, Griffin MP, Monga TN, McBride ID: Work and power in gait of stroke patients. Arch Phys Med Rehabil. 1991, 72: 309-314.PubMed Olney SJ, Griffin MP, Monga TN, McBride ID: Work and power in gait of stroke patients. Arch Phys Med Rehabil. 1991, 72: 309-314.PubMed
15.
go back to reference Titianova EB, Tarkka IM: Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. J Rehabil Res Dev. 1995, 32 (3): 236-44.PubMed Titianova EB, Tarkka IM: Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. J Rehabil Res Dev. 1995, 32 (3): 236-44.PubMed
16.
go back to reference Hassid E, Rose D, Commisarow J, Guttry M, Dobkin BH: Improved gait symmetry in hemiparetic stroke patients induced during body weight supported treadmill stepping. J Neurol Rehabil. 1997, 11 (1): 21-26. Hassid E, Rose D, Commisarow J, Guttry M, Dobkin BH: Improved gait symmetry in hemiparetic stroke patients induced during body weight supported treadmill stepping. J Neurol Rehabil. 1997, 11 (1): 21-26.
17.
go back to reference Reisman DS, Wityk R, Silver K, Bastian AJ: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007, 130 (Pt 7): 1861-72.PubMedCentralCrossRefPubMed Reisman DS, Wityk R, Silver K, Bastian AJ: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007, 130 (Pt 7): 1861-72.PubMedCentralCrossRefPubMed
18.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000, 37 (6): 693-700.PubMed Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000, 37 (6): 693-700.PubMed
19.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K: Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil. 2005, 12 (2): 22-35.CrossRefPubMed Hidler J, Nichols D, Pelliccio M, Brady K: Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil. 2005, 12 (2): 22-35.CrossRefPubMed
20.
go back to reference Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-14.CrossRefPubMed Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-14.CrossRefPubMed
21.
go back to reference Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007, 38 (2): 349-54.CrossRefPubMed Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007, 38 (2): 349-54.CrossRefPubMed
22.
go back to reference Chen G, Patten C: Joint moment work during the stance-to-swing transition in hemiparetic subjects. J Biomech. 2008, 41 (4): 877-83.CrossRefPubMed Chen G, Patten C: Joint moment work during the stance-to-swing transition in hemiparetic subjects. J Biomech. 2008, 41 (4): 877-83.CrossRefPubMed
23.
go back to reference Kerrigan DC, Karvosky ME, Riley PO: Spastic paretic stiff-legged gait: joint kinetics. Am J Phys Med Rehabil. 2001, 80 (4): 244-9.CrossRefPubMed Kerrigan DC, Karvosky ME, Riley PO: Spastic paretic stiff-legged gait: joint kinetics. Am J Phys Med Rehabil. 2001, 80 (4): 244-9.CrossRefPubMed
24.
go back to reference Hidler J, Neckel N: Inverse-dynamics based assessment of gait using a robotic orthosis. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 185-8.CrossRefPubMed Hidler J, Neckel N: Inverse-dynamics based assessment of gait using a robotic orthosis. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 185-8.CrossRefPubMed
25.
go back to reference Folstein MF, Folstein SE, McHugh PR: "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975, 12 (3): 189-98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR: "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975, 12 (3): 189-98.CrossRefPubMed
26.
go back to reference Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975, 7 (1): 13-31.PubMed Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975, 7 (1): 13-31.PubMed
27.
go back to reference Neckel ND, Hidler JM: Method for Motion Tracking Inside the Lokomat Robotic Orthosis. Proceedings of the American Society of Biomechanics Annual Conference: 6–9 Sept. 2006, ; Blacksburg. Meeting chair Stefan Dumas Neckel ND, Hidler JM: Method for Motion Tracking Inside the Lokomat Robotic Orthosis. Proceedings of the American Society of Biomechanics Annual Conference: 6–9 Sept. 2006, ; Blacksburg. Meeting chair Stefan Dumas
28.
go back to reference Neckel N, Wisman W, Hidler J: Limb alignment and kinematics inside a Lokomat robotic orthosis. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 2698-701.CrossRefPubMed Neckel N, Wisman W, Hidler J: Limb alignment and kinematics inside a Lokomat robotic orthosis. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 2698-701.CrossRefPubMed
29.
go back to reference Belli A, Bui P, Berger A, Geyssant A, Lacour JR: A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. J Biomech. 2001, 34 (1): 105-12.CrossRefPubMed Belli A, Bui P, Berger A, Geyssant A, Lacour JR: A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. J Biomech. 2001, 34 (1): 105-12.CrossRefPubMed
30.
go back to reference Frey M, Colombo G, Vaglio M, Bucher R, Jörg M, Riener R: A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006, 14 (3): 311-21.CrossRefPubMed Frey M, Colombo G, Vaglio M, Bucher R, Jörg M, Riener R: A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006, 14 (3): 311-21.CrossRefPubMed
31.
go back to reference Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon). 2005, 20 (2): 184-93.CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon). 2005, 20 (2): 184-93.CrossRef
32.
go back to reference Mirbagheri MM, Alibiglou L, Thajchayapong M, Rymer WZ: Muscle and reflex changes with varying joint angle in hemiparetic stroke. J Neuroeng Rehabil. 2008, 27 (5): 6-CrossRef Mirbagheri MM, Alibiglou L, Thajchayapong M, Rymer WZ: Muscle and reflex changes with varying joint angle in hemiparetic stroke. J Neuroeng Rehabil. 2008, 27 (5): 6-CrossRef
Metadata
Title
Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern
Authors
Nathan D Neckel
Natalie Blonien
Diane Nichols
Joseph Hidler
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2008
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-5-19

Other articles of this Issue 1/2008

Journal of NeuroEngineering and Rehabilitation 1/2008 Go to the issue