Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2023

Open Access 01-12-2023 | Research

Abcd1 deficiency accelerates cuprizone-induced oligodendrocyte loss and axonopathy in a demyelinating mouse model of X-linked adrenoleukodystrophy

Authors: Ksenija Martinović, Jan Bauer, Markus Kunze, Johannes Berger, Sonja Forss-Petter

Published in: Acta Neuropathologica Communications | Issue 1/2023

Login to get access

Abstract

X-linked adrenoleukodystrophy (X-ALD), the most frequent, inherited peroxisomal disease, is caused by mutations in the ABCD1 gene encoding a peroxisomal lipid transporter importing very long-chain fatty acids (VLCFAs) from the cytosol into peroxisomes for degradation via β-oxidation. ABCD1 deficiency results in accumulation of VLCFAs in tissues and body fluids of X-ALD patients with a wide range of phenotypic manifestations. The most severe variant, cerebral X-ALD (CALD) is characterized by progressive inflammation, loss of the myelin-producing oligodendrocytes and demyelination of the cerebral white matter. Whether the oligodendrocyte loss and demyelination in CALD are caused by a primary cell autonomous defect or injury to oligodendrocytes or by a secondary effect of the inflammatory reaction remains unresolved. To address the role of X-ALD oligodendrocytes in demyelinating pathophysiology, we combined the Abcd1 deficient X-ALD mouse model, in which VLCFAs accumulate without spontaneous demyelination, with the cuprizone model of toxic demyelination. In mice, the copper chelator cuprizone induces reproducible demyelination in the corpus callosum, followed by remyelination upon cuprizone removal. By immunohistochemical analyses of oligodendrocytes, myelin, axonal damage and microglia activation during de-and remyelination, we found that the mature oligodendrocytes of Abcd1 KO mice are more susceptible to cuprizone-induced cell death compared to WT mice in the early demyelinating phase. Furthermore, this effect was mirrored by a greater extent of acute axonal damage during demyelination in the KO mice. Abcd1 deficiency did not affect the function of microglia in either phase of the treatment. Also, the proliferation and differentiation of oligodendrocyte precursor cells and remyelination progressed at similar rates in both genotypes. Taken together, our findings point to an effect of Abcd1 deficiency on mature oligodendrocytes and the oligodendrocyte-axon unit, leading to increased vulnerability in the context of a demyelinating insult.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moser AB et al (2016) Newborn screening for X-linked adrenoleukodystrophy. Int J Neonatal Screen 2(4):1CrossRef Moser AB et al (2016) Newborn screening for X-linked adrenoleukodystrophy. Int J Neonatal Screen 2(4):1CrossRef
2.
go back to reference Mosser J et al (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361(6414):726–730PubMedCrossRef Mosser J et al (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361(6414):726–730PubMedCrossRef
3.
go back to reference Mosser J et al (1994) The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet 3(2):265–271PubMedCrossRef Mosser J et al (1994) The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet 3(2):265–271PubMedCrossRef
4.
go back to reference Wiesinger C et al (2013) Impaired very long-chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288(26):19269–19279PubMedPubMedCentralCrossRef Wiesinger C et al (2013) Impaired very long-chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288(26):19269–19279PubMedPubMedCentralCrossRef
5.
go back to reference Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120(Pt 8):1485–1508PubMedCrossRef Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120(Pt 8):1485–1508PubMedCrossRef
6.
go back to reference Berger J et al (1994) X-linked adrenoleukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem Biophys Res Commun 205(3):1638–1643PubMedCrossRef Berger J et al (1994) X-linked adrenoleukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem Biophys Res Commun 205(3):1638–1643PubMedCrossRef
7.
go back to reference Smith KD et al (1999) X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem Res 24(4):521–535PubMedCrossRef Smith KD et al (1999) X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem Res 24(4):521–535PubMedCrossRef
8.
go back to reference Powers JM et al (2000) Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 59(2):89–102PubMedCrossRef Powers JM et al (2000) Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 59(2):89–102PubMedCrossRef
10.
go back to reference Powers JM et al (1992) The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol Exp Neurol 51(6):630–643PubMedCrossRef Powers JM et al (1992) The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol Exp Neurol 51(6):630–643PubMedCrossRef
12.
go back to reference Cartier N, Aubourg P (2010) Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol 20(4):857–862PubMedPubMedCentralCrossRef Cartier N, Aubourg P (2010) Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol 20(4):857–862PubMedPubMedCentralCrossRef
13.
go back to reference Raymond GV et al (2019) Survival and Functional Outcomes in Boys with Cerebral Adrenoleukodystrophy with and without Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transpl 25(3):538–548CrossRef Raymond GV et al (2019) Survival and Functional Outcomes in Boys with Cerebral Adrenoleukodystrophy with and without Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transpl 25(3):538–548CrossRef
14.
go back to reference Weber FD et al (2014) X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes. Hum Mol Genet 23(10):2542–2550PubMedCrossRef Weber FD et al (2014) X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes. Hum Mol Genet 23(10):2542–2550PubMedCrossRef
16.
go back to reference Eichler FS et al (2008) Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol 63(6):729–742PubMedCrossRef Eichler FS et al (2008) Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol 63(6):729–742PubMedCrossRef
17.
go back to reference Bergner CG et al (2019) Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia 67(6):1196–1209PubMedPubMedCentralCrossRef Bergner CG et al (2019) Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia 67(6):1196–1209PubMedPubMedCentralCrossRef
18.
go back to reference Bergner CG et al (2021) Concurrent axon and myelin destruction differentiates X-linked adrenoleukodystrophy from multiple sclerosis. Glia 69(10):2362–2377PubMedCrossRef Bergner CG et al (2021) Concurrent axon and myelin destruction differentiates X-linked adrenoleukodystrophy from multiple sclerosis. Glia 69(10):2362–2377PubMedCrossRef
19.
go back to reference Forss-Petter S et al (1997) Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50(5):829–843PubMedCrossRef Forss-Petter S et al (1997) Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50(5):829–843PubMedCrossRef
21.
go back to reference Kobayashi T et al (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232(3):631–636PubMedCrossRef Kobayashi T et al (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232(3):631–636PubMedCrossRef
22.
go back to reference Pujol A et al (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11(5):499–505PubMedCrossRef Pujol A et al (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11(5):499–505PubMedCrossRef
23.
go back to reference Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1(4):413–426PubMedCrossRef Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1(4):413–426PubMedCrossRef
24.
go back to reference Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116PubMedCrossRef Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116PubMedCrossRef
25.
go back to reference Hiremath MM et al (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49PubMedCrossRef Hiremath MM et al (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49PubMedCrossRef
27.
go back to reference Lindner M et al (2009) Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett 453(2):120–125PubMedCrossRef Lindner M et al (2009) Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett 453(2):120–125PubMedCrossRef
28.
go back to reference Dumser M et al (2007) Lack of adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency. Acta Neuropathol 114(6):573–586PubMedCrossRef Dumser M et al (2007) Lack of adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency. Acta Neuropathol 114(6):573–586PubMedCrossRef
29.
30.
go back to reference Hochstrasser T et al (2017) Cuprizone-containing pellets are less potent to induce consistent demyelination in the corpus callosum of C57BL/6 Mice. J Mol Neurosci 61(4):617–624PubMedCrossRef Hochstrasser T et al (2017) Cuprizone-containing pellets are less potent to induce consistent demyelination in the corpus callosum of C57BL/6 Mice. J Mol Neurosci 61(4):617–624PubMedCrossRef
31.
go back to reference Zirngibl M et al (2022) Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 17(1):34PubMedPubMedCentralCrossRef Zirngibl M et al (2022) Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 17(1):34PubMedPubMedCentralCrossRef
32.
go back to reference Kipp M et al (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736PubMedCrossRef Kipp M et al (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736PubMedCrossRef
33.
go back to reference Berghoff SA et al (2021) Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci 24(1):47–60PubMedCrossRef Berghoff SA et al (2021) Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci 24(1):47–60PubMedCrossRef
34.
go back to reference Hesse A et al (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37(2):362–369PubMedCrossRef Hesse A et al (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37(2):362–369PubMedCrossRef
35.
36.
go back to reference Baarine M et al (2015) ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem 133(3):380–396PubMedPubMedCentralCrossRef Baarine M et al (2015) ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem 133(3):380–396PubMedPubMedCentralCrossRef
37.
go back to reference Mason JL et al (2000) Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 61(3):251–262PubMedCrossRef Mason JL et al (2000) Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 61(3):251–262PubMedCrossRef
38.
go back to reference Moyon S et al (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 35(1):4–20PubMedPubMedCentralCrossRef Moyon S et al (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 35(1):4–20PubMedPubMedCentralCrossRef
39.
go back to reference Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 18(12):753–769PubMedCrossRef Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 18(12):753–769PubMedCrossRef
40.
go back to reference Feigenbaum V et al (2000) Apoptosis in the central nervous system of cerebral adrenoleukodystrophy patients. Neurobiol Dis 7(6):600–612PubMedCrossRef Feigenbaum V et al (2000) Apoptosis in the central nervous system of cerebral adrenoleukodystrophy patients. Neurobiol Dis 7(6):600–612PubMedCrossRef
41.
go back to reference Ito M et al (2001) Potential environmental and host participants in the early white matter lesion of adreno-leukodystrophy: morphologic evidence for CD8 cytotoxic T cells, cytolysis of oligodendrocytes, and CD1-mediated lipid antigen presentation. J Neuropathol Exp Neurol 60(10):1004–1019PubMedCrossRef Ito M et al (2001) Potential environmental and host participants in the early white matter lesion of adreno-leukodystrophy: morphologic evidence for CD8 cytotoxic T cells, cytolysis of oligodendrocytes, and CD1-mediated lipid antigen presentation. J Neuropathol Exp Neurol 60(10):1004–1019PubMedCrossRef
45.
go back to reference Griffiths I et al (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280(5369):1610–1613PubMedCrossRef Griffiths I et al (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280(5369):1610–1613PubMedCrossRef
46.
go back to reference Lappe-Siefke C et al (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374PubMedCrossRef Lappe-Siefke C et al (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374PubMedCrossRef
47.
go back to reference Fouquet F et al (1997) Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol Dis 3(4):271–285PubMedCrossRef Fouquet F et al (1997) Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol Dis 3(4):271–285PubMedCrossRef
48.
go back to reference Pasquini LA et al (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32(2):279–292PubMedCrossRef Pasquini LA et al (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32(2):279–292PubMedCrossRef
49.
go back to reference Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295PubMed Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295PubMed
50.
go back to reference Zierfuss B et al (2020) Targeting foam cell formation in inflammatory brain diseases by the histone modifier MS-275. Ann Clin Transl Neurol 7(11):2161–2177PubMedPubMedCentralCrossRef Zierfuss B et al (2020) Targeting foam cell formation in inflammatory brain diseases by the histone modifier MS-275. Ann Clin Transl Neurol 7(11):2161–2177PubMedPubMedCentralCrossRef
51.
go back to reference Lombard-Platet G et al (1996) A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc Natl Acad Sci USA 93(3):1265–1269PubMedPubMedCentralCrossRef Lombard-Platet G et al (1996) A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc Natl Acad Sci USA 93(3):1265–1269PubMedPubMedCentralCrossRef
52.
go back to reference Holzinger A et al (1997) cDNA cloning and mRNA expression of the human adrenoleukodystrophy related protein (ALDRP), a peroxisomal ABC transporter. Biochem Biophys Res Commun 239(1):261–264PubMedCrossRef Holzinger A et al (1997) cDNA cloning and mRNA expression of the human adrenoleukodystrophy related protein (ALDRP), a peroxisomal ABC transporter. Biochem Biophys Res Commun 239(1):261–264PubMedCrossRef
53.
go back to reference Kamijo K et al (1990) The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem 265(8):4534–4540PubMedCrossRef Kamijo K et al (1990) The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem 265(8):4534–4540PubMedCrossRef
54.
go back to reference van Roermund CW et al (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta 1811(3):148–152PubMedCrossRef van Roermund CW et al (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta 1811(3):148–152PubMedCrossRef
55.
go back to reference Netik A et al (1999) Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum Mol Genet 8(5):907–913PubMedCrossRef Netik A et al (1999) Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum Mol Genet 8(5):907–913PubMedCrossRef
56.
go back to reference Pujol A et al (2004) Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum Mol Genet 13(23):2997–3006PubMedCrossRef Pujol A et al (2004) Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum Mol Genet 13(23):2997–3006PubMedCrossRef
57.
58.
go back to reference Gortz AL et al (2018) Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss. Neuropathol Appl Neurobiol 44(4):363–376PubMedCrossRef Gortz AL et al (2018) Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss. Neuropathol Appl Neurobiol 44(4):363–376PubMedCrossRef
59.
go back to reference Singh J, Khan M, Singh I (2009) Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res 50(1):135–147PubMedPubMedCentralCrossRef Singh J, Khan M, Singh I (2009) Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res 50(1):135–147PubMedPubMedCentralCrossRef
60.
go back to reference Morita M et al (2021) Generation of an immortalized astrocytic cell line from Abcd1-deficient H-2K(b)tsA58 mice to facilitate the study of the role of astrocytes in X-linked adrenoleukodystrophy. Heliyon 7(2):e06228PubMedPubMedCentralCrossRef Morita M et al (2021) Generation of an immortalized astrocytic cell line from Abcd1-deficient H-2K(b)tsA58 mice to facilitate the study of the role of astrocytes in X-linked adrenoleukodystrophy. Heliyon 7(2):e06228PubMedPubMedCentralCrossRef
62.
go back to reference Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947PubMedPubMedCentralCrossRef Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947PubMedPubMedCentralCrossRef
64.
go back to reference Patrikios P et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12):3165–3172PubMedCrossRef Patrikios P et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12):3165–3172PubMedCrossRef
65.
go back to reference Simkins TJ, Duncan GJ, Bourdette D (2021) Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep 21(6):26PubMedCrossRef Simkins TJ, Duncan GJ, Bourdette D (2021) Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep 21(6):26PubMedCrossRef
66.
go back to reference Weinhofer I et al (2021) Neurofilament light chain as a potential biomarker for monitoring neurodegeneration in X-linked adrenoleukodystrophy. Nat Commun 12(1):1816PubMedPubMedCentralCrossRef Weinhofer I et al (2021) Neurofilament light chain as a potential biomarker for monitoring neurodegeneration in X-linked adrenoleukodystrophy. Nat Commun 12(1):1816PubMedPubMedCentralCrossRef
67.
68.
70.
go back to reference Petrillo S et al (2022) Antioxidant response in human X-linked adrenoleukodystrophy fibroblasts. Antioxidants (Basel) 11(11):1 Petrillo S et al (2022) Antioxidant response in human X-linked adrenoleukodystrophy fibroblasts. Antioxidants (Basel) 11(11):1
71.
go back to reference Raas Q et al (2019) CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells: novel microglial models for X-linked Adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 1864(5):704–714PubMedCrossRef Raas Q et al (2019) CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells: novel microglial models for X-linked Adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 1864(5):704–714PubMedCrossRef
Metadata
Title
Abcd1 deficiency accelerates cuprizone-induced oligodendrocyte loss and axonopathy in a demyelinating mouse model of X-linked adrenoleukodystrophy
Authors
Ksenija Martinović
Jan Bauer
Markus Kunze
Johannes Berger
Sonja Forss-Petter
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2023
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-023-01595-w

Other articles of this Issue 1/2023

Acta Neuropathologica Communications 1/2023 Go to the issue