Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2009

01-03-2009

AAV-2-Mediated Expression of IGF-1 in Skeletal Myoblasts Stimulates Angiogenesis and Cell Survival

Authors: Indira V. Subramanian, Brian C. A. Fernandes, Timothy Robinson, Jennifer Koening, Kelly S. LaPara, S. Ramakrishnan

Published in: Journal of Cardiovascular Translational Research | Issue 1/2009

Login to get access

Abstract

The transplantation of skeletal myoblasts is being tested in various organ systems to facilitate tissue repair and regeneration. Previous studies have indicated that transplanted cells for varied reasons were not surviving in sufficient numbers following transplantation, thus negatively affecting overall therapeutic efficacy of the approach. We hypothesize that the genetic modification of myoblasts to express insulin-like growth factor 1 (IGF-1) locally may enhance the survival of transplanted cells by stimulating neo-vascularization, decreasing apoptosis, and promoting cell proliferation. Using an adeno-associated virus (adeno-associated virus type 2) vector system, the IGF-1 gene was introduced into canine skeletal myoblasts. As a negative control, myoblasts transduced with the green fluorescence protein (GFP) was used. Relative angiogenic response induced by IGF-1 myoblast was compared to VEGF165-induced neo-vascularization using Matrigel plugs under similar conditions. In vitro evaluation and characterization revealed that the secreted IGF-1 protein was biologically and functionally active in promoting endothelial cell proliferation, migration and assembly into vessel-like structures. Matrigel plugs containing the three test groups were implanted subcutaneously in nude mice (n = 5). After 3 weeks, analysis of explanted samples revealed an enhanced neo-vascularization with an average microvessel density per field for IGF-1 at 55.9 versus 33.4 for vascular endothelial growth factor and 24 for GFP. Additionally, apoptosis was significantly reduced (p ≤ 0.02) and proliferative capacity of implanted cells significantly increased (p ≤ 0.01) with the IGF-1-transduced myoblasts. We conclude that the genetic modification of skeletal myoblasts with the IGF-1 gene offers a potential means for enhanced cell survival following transplantation.
Literature
1.
go back to reference Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183. Nov 15.PubMedCrossRef Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183. Nov 15.PubMedCrossRef
2.
go back to reference Chancellor, M. B., Yokoyama, T., Tirney, S., Mattes, C. E., Ozawa, H., Yoshimura, N., et al. (2000). Preliminary results of myoblast injection into the urethra and bladder wall: A possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourology and Urodynamics, 19, 279–287.PubMedCrossRef Chancellor, M. B., Yokoyama, T., Tirney, S., Mattes, C. E., Ozawa, H., Yoshimura, N., et al. (2000). Preliminary results of myoblast injection into the urethra and bladder wall: A possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourology and Urodynamics, 19, 279–287.PubMedCrossRef
3.
go back to reference Hashimoto, N., Murase, T., Kondo, S., Okuda, A., & Inagawa-Ogashiwa, M. (2004). Muscle reconstitution by muscle satellite cell descendents with stem cell-like properties. Development, 131, 5481–5490.PubMedCrossRef Hashimoto, N., Murase, T., Kondo, S., Okuda, A., & Inagawa-Ogashiwa, M. (2004). Muscle reconstitution by muscle satellite cell descendents with stem cell-like properties. Development, 131, 5481–5490.PubMedCrossRef
4.
go back to reference Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart: The scientific foundations of cardiac repair. The Journal of Clinical Investigation, 115, 572–583.PubMed Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart: The scientific foundations of cardiac repair. The Journal of Clinical Investigation, 115, 572–583.PubMed
5.
go back to reference Pouly, J., et al. (2004). Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation, 110, 1626–1631.PubMedCrossRef Pouly, J., et al. (2004). Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation, 110, 1626–1631.PubMedCrossRef
6.
go back to reference De Coppi, P., et al. (2005). Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Engineering, 11(Number 7/8), 1034–1044.PubMedCrossRef De Coppi, P., et al. (2005). Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Engineering, 11(Number 7/8), 1034–1044.PubMedCrossRef
7.
go back to reference Tambara, K., et al. (2005). Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation, 112(9 Suppl), I-129–I-134. Aug 30. Tambara, K., et al. (2005). Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation, 112(9 Suppl), I-129–I-134. Aug 30.
8.
go back to reference Ye, L., et al. (2007). Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF(165) and angiopoietin-1. European Journal of Heart Failure, 9, 15–22. Jul 6.PubMedCrossRef Ye, L., et al. (2007). Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF(165) and angiopoietin-1. European Journal of Heart Failure, 9, 15–22. Jul 6.PubMedCrossRef
9.
go back to reference Jones, J. I., & Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: Biological actions. Endocrine Reviews, 16, 3–34.PubMedCrossRef Jones, J. I., & Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: Biological actions. Endocrine Reviews, 16, 3–34.PubMedCrossRef
10.
go back to reference Werner, H., Adamo, M., Roberts Jr., C. T., & LeRoith, D. (1994). Molecular and cellular aspects of insulin-like growth factor action. Vitamins and Hormones, 48, 1–57.PubMedCrossRef Werner, H., Adamo, M., Roberts Jr., C. T., & LeRoith, D. (1994). Molecular and cellular aspects of insulin-like growth factor action. Vitamins and Hormones, 48, 1–57.PubMedCrossRef
11.
go back to reference Jacquemin, V., Furling, D., Bigot, A., Butler-Browne, G. S., & Mouly, V. (2004). IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Experimental Cell Research, 299(1), 148–158. Sep 10.PubMedCrossRef Jacquemin, V., Furling, D., Bigot, A., Butler-Browne, G. S., & Mouly, V. (2004). IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Experimental Cell Research, 299(1), 148–158. Sep 10.PubMedCrossRef
12.
go back to reference Machida, S., & Booth, F. W. (2004). Insulin-like growth factor 1 and muscle growth: Implication for satellite cell proliferation. Proceedings of the Nutrition Society, 63(2), 337–340. May.PubMedCrossRef Machida, S., & Booth, F. W. (2004). Insulin-like growth factor 1 and muscle growth: Implication for satellite cell proliferation. Proceedings of the Nutrition Society, 63(2), 337–340. May.PubMedCrossRef
13.
go back to reference Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N., & Rosenthal, N. (1999). IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 400, 581–585. Aug 5.PubMedCrossRef Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N., & Rosenthal, N. (1999). IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 400, 581–585. Aug 5.PubMedCrossRef
14.
go back to reference Chao, W., et al. (2003). Strategic advantages of insulin-like growth factor-I expression for cardioprotection. Journal of Gene Medicine, 5(4), 277–286. Apr.PubMedCrossRef Chao, W., et al. (2003). Strategic advantages of insulin-like growth factor-I expression for cardioprotection. Journal of Gene Medicine, 5(4), 277–286. Apr.PubMedCrossRef
15.
go back to reference Su, E. J., et al. (2003). Gene therapy vector-mediated expression of insulin-like growth factors protects cardiomyocytes from apoptosis and enhances neo-vascularization. American Journal of Physiology, Heart and Circulatory Physiology, 284(4), H1429–H1440. Apr. Su, E. J., et al. (2003). Gene therapy vector-mediated expression of insulin-like growth factors protects cardiomyocytes from apoptosis and enhances neo-vascularization. American Journal of Physiology, Heart and Circulatory Physiology, 284(4), H1429–H1440. Apr.
16.
go back to reference Li, Q., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. Journal of Clinical Investigation, 100(8), 1991–1999. Oct 15.PubMedCrossRef Li, Q., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. Journal of Clinical Investigation, 100(8), 1991–1999. Oct 15.PubMedCrossRef
17.
go back to reference Soonpaa, M. H., & Field, L. J. (1998). Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circulation Research, 83(1), 15–26.PubMed Soonpaa, M. H., & Field, L. J. (1998). Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circulation Research, 83(1), 15–26.PubMed
18.
go back to reference Wang, P. H. (2001). Roads to survival: insulin-like growth factor-1 signaling pathways in cardiac muscle. Circulation Research, 88(6), 552–554.PubMed Wang, P. H. (2001). Roads to survival: insulin-like growth factor-1 signaling pathways in cardiac muscle. Circulation Research, 88(6), 552–554.PubMed
19.
go back to reference Anversa, P., & Nadal-Ginard, B. (2002). Cardiac chimerism: Methods matter. Circulation, 106(18), e129–e131.PubMedCrossRef Anversa, P., & Nadal-Ginard, B. (2002). Cardiac chimerism: Methods matter. Circulation, 106(18), e129–e131.PubMedCrossRef
20.
go back to reference Musaro, A., et al. (2004). Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proceedings of the National Academy of Sciences of the United States of America, 101(5), 1206–1210. Feb 3.PubMedCrossRef Musaro, A., et al. (2004). Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proceedings of the National Academy of Sciences of the United States of America, 101(5), 1206–1210. Feb 3.PubMedCrossRef
21.
go back to reference Rabinovsky, E. D., & Draghia-Akli, R. (2004). Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Molecular Therapy, 9(1), 46–55.PubMedCrossRef Rabinovsky, E. D., & Draghia-Akli, R. (2004). Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Molecular Therapy, 9(1), 46–55.PubMedCrossRef
22.
go back to reference Conti, E., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110(15), 2260–2265. Oct 12.PubMedCrossRef Conti, E., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110(15), 2260–2265. Oct 12.PubMedCrossRef
23.
go back to reference Kofidis, T., et al. (2004). Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 22(7), 1239–1245.PubMedCrossRef Kofidis, T., et al. (2004). Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 22(7), 1239–1245.PubMedCrossRef
24.
go back to reference Liu, T. B., et al. (2004). Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. American Journal of Physiology, Heart and Circulatory Physiology, 287(6), H2840–2849. Dec.CrossRef Liu, T. B., et al. (2004). Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. American Journal of Physiology, Heart and Circulatory Physiology, 287(6), H2840–2849. Dec.CrossRef
25.
go back to reference Fouts, K., Fernandes, B., Mal, N., Liu, J., & Laurita, K. R. (2006). Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine. Heart Rhythm, 3, 452–461.PubMedCrossRef Fouts, K., Fernandes, B., Mal, N., Liu, J., & Laurita, K. R. (2006). Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine. Heart Rhythm, 3, 452–461.PubMedCrossRef
26.
go back to reference Rohr, U. P., Wulf, M. A., Stahn, S., Steidl, U., Haas, R., & Kronenwett, R. (2002). Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative real-time PCR. Journal of Virological Methods, 106(1), 81–88. Oct.PubMedCrossRef Rohr, U. P., Wulf, M. A., Stahn, S., Steidl, U., Haas, R., & Kronenwett, R. (2002). Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative real-time PCR. Journal of Virological Methods, 106(1), 81–88. Oct.PubMedCrossRef
27.
go back to reference O’Reilly, M., et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(Issue 2), 277–285.PubMedCrossRef O’Reilly, M., et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(Issue 2), 277–285.PubMedCrossRef
28.
go back to reference Subramanian, I. V., Ghebre, R., & Ramakrishnan, S. (2005). Adeno-associated virus-mediated delivery of a mutant endostatin suppresses ovarian carcinoma growth in mice. Gene Therapy, 12(1), 30–38. Jan.PubMedCrossRef Subramanian, I. V., Ghebre, R., & Ramakrishnan, S. (2005). Adeno-associated virus-mediated delivery of a mutant endostatin suppresses ovarian carcinoma growth in mice. Gene Therapy, 12(1), 30–38. Jan.PubMedCrossRef
29.
go back to reference Wild, R., Ramakrishnan, S., Sedgewick, J., & Griffioen, A. W. (2000). Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: Effects of VEGF-toxin conjugate. Microvascular Research, 59, 368–376.PubMedCrossRef Wild, R., Ramakrishnan, S., Sedgewick, J., & Griffioen, A. W. (2000). Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: Effects of VEGF-toxin conjugate. Microvascular Research, 59, 368–376.PubMedCrossRef
30.
go back to reference LeRoith, D., Werner, H., Beitner-Johnson, D., & Roberts, C. T. (1995). Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Reviews, 16, 143–163.PubMedCrossRef LeRoith, D., Werner, H., Beitner-Johnson, D., & Roberts, C. T. (1995). Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Reviews, 16, 143–163.PubMedCrossRef
31.
go back to reference Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., et al. (2000). Molecular Cell, 6, 87–97.PubMedCrossRef Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., et al. (2000). Molecular Cell, 6, 87–97.PubMedCrossRef
32.
go back to reference Aicher, A., et al. (2003). Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation, 107, 2134–2139.PubMedCrossRef Aicher, A., et al. (2003). Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation, 107, 2134–2139.PubMedCrossRef
33.
go back to reference Muller-Ehmsen, J., et al. (2002). Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. Journal of Molecular and Cellular Cardiology, 34, 107–116.PubMedCrossRef Muller-Ehmsen, J., et al. (2002). Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. Journal of Molecular and Cellular Cardiology, 34, 107–116.PubMedCrossRef
34.
go back to reference Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20. Jul 9.PubMedCrossRef Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20. Jul 9.PubMedCrossRef
35.
go back to reference Fernandes, B., Bergan, M., Gardeski, K., Lyu, S., Morris, M. (2006). Strategies to prevent the phenomenon of settling associated with cardiac cell delivery. Tissue Engineering & Regenerative Medicine International Society, European Chapter Meeting, Rotterdam. October, Abstract 56, pg 190. Fernandes, B., Bergan, M., Gardeski, K., Lyu, S., Morris, M. (2006). Strategies to prevent the phenomenon of settling associated with cardiac cell delivery. Tissue Engineering & Regenerative Medicine International Society, European Chapter Meeting, Rotterdam. October, Abstract 56, pg 190.
36.
go back to reference Dow, J., Simkhovich, B. Z., Kedes, L., & Kloner, R. A. (2005). Washout of transplanted cells from the heart: A potential new hurdle for cell transplantation therapy. Cardiovascular Research, 67(2), 301–307. Aug 1.PubMedCrossRef Dow, J., Simkhovich, B. Z., Kedes, L., & Kloner, R. A. (2005). Washout of transplanted cells from the heart: A potential new hurdle for cell transplantation therapy. Cardiovascular Research, 67(2), 301–307. Aug 1.PubMedCrossRef
37.
go back to reference Penicka, M., Widimsky, P., Kobylka, P., Kozak, T., & Lang, O. (2005). Images in cardiovascular medicine. Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction. Circulation, 112(4), e63–e65. Jul 26.PubMedCrossRef Penicka, M., Widimsky, P., Kobylka, P., Kozak, T., & Lang, O. (2005). Images in cardiovascular medicine. Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction. Circulation, 112(4), e63–e65. Jul 26.PubMedCrossRef
38.
go back to reference Shansky, J., Creswick, B., Lee, P., Wang, X., & Vandenburgh, H. (2006). Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro. Tissue Engineering, 12(7), 1833–1841. Jul.PubMedCrossRef Shansky, J., Creswick, B., Lee, P., Wang, X., & Vandenburgh, H. (2006). Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro. Tissue Engineering, 12(7), 1833–1841. Jul.PubMedCrossRef
39.
go back to reference Kanemitsu, N., et al. (2006). Insulin-like growth factor-1 enhances the efficacy of myoblast transplantation with its multiple functions in the chronic myocardial infarction rat model. Journal of Heart and Lung Transplantation, 25(10), 1253–1262. Oct.PubMedCrossRef Kanemitsu, N., et al. (2006). Insulin-like growth factor-1 enhances the efficacy of myoblast transplantation with its multiple functions in the chronic myocardial infarction rat model. Journal of Heart and Lung Transplantation, 25(10), 1253–1262. Oct.PubMedCrossRef
40.
go back to reference Castellon, R., Hamdi, H. K., Sacerio, I., Aoki, A. M., Kenney, M. C., & Ljubimov, A. V. (2002). Effects of angiogenic growth factor combinations on retinal endothelial cells. Experimental Eye Research, 74, 523–535.PubMedCrossRef Castellon, R., Hamdi, H. K., Sacerio, I., Aoki, A. M., Kenney, M. C., & Ljubimov, A. V. (2002). Effects of angiogenic growth factor combinations on retinal endothelial cells. Experimental Eye Research, 74, 523–535.PubMedCrossRef
41.
go back to reference Shigematsu, S., Yamauchi, K., Nakajima, K., Iijima, S., Aizawa, T., & Hashizume, K. (1999). IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocrine Journal, 46(Supp l), S59–S62.PubMedCrossRef Shigematsu, S., Yamauchi, K., Nakajima, K., Iijima, S., Aizawa, T., & Hashizume, K. (1999). IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocrine Journal, 46(Supp l), S59–S62.PubMedCrossRef
42.
go back to reference Arthur, W. T., Vernon, R. B., Sage, E. H., & Reed, M. J. (1998). Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvascular Research, 55, 260–262.PubMedCrossRef Arthur, W. T., Vernon, R. B., Sage, E. H., & Reed, M. J. (1998). Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvascular Research, 55, 260–262.PubMedCrossRef
43.
go back to reference Popa, E. R., et al. (2006). Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. Journal of Molecular and Cellular Cardiology, 41(1), 86–96. Jul.PubMedCrossRef Popa, E. R., et al. (2006). Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. Journal of Molecular and Cellular Cardiology, 41(1), 86–96. Jul.PubMedCrossRef
44.
go back to reference Hawke, T. J., & Garry, D. J. (2001). Myogenic satellite cells: Physiology to molecular biology. Journal of Applied Physiology, 91, 534–551.PubMed Hawke, T. J., & Garry, D. J. (2001). Myogenic satellite cells: Physiology to molecular biology. Journal of Applied Physiology, 91, 534–551.PubMed
Metadata
Title
AAV-2-Mediated Expression of IGF-1 in Skeletal Myoblasts Stimulates Angiogenesis and Cell Survival
Authors
Indira V. Subramanian
Brian C. A. Fernandes
Timothy Robinson
Jennifer Koening
Kelly S. LaPara
S. Ramakrishnan
Publication date
01-03-2009
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2009
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-008-9063-8

Other articles of this Issue 1/2009

Journal of Cardiovascular Translational Research 1/2009 Go to the issue