Skip to main content
Top
Published in: BMC Infectious Diseases 1/2009

Open Access 01-12-2009 | Research article

A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks

Authors: Ana Perisic, Chris T Bauch

Published in: BMC Infectious Diseases | Issue 1/2009

Login to get access

Abstract

Background

Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network.

Methods

We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection.

Results

We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective.

Conclusion

For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled.
Appendix
Available only for authorised users
Literature
2.
go back to reference Leitenberg M: Deaths in wars and conflicts in the 20th century. Cornel University Peace Studies Program ISSN 1075-4857. 2006, 3 (29): 4- Leitenberg M: Deaths in wars and conflicts in the 20th century. Cornel University Peace Studies Program ISSN 1075-4857. 2006, 3 (29): 4-
4.
go back to reference Bernoulli D: Essai dune nouvelle analyse de la mortalite causee par la petite verole et des avantages de linoculation pour la prevenir. Memoires de Mathematiques et de Physique, Academie Royale des Sciences. 1760, 1-45. Bernoulli D: Essai dune nouvelle analyse de la mortalite causee par la petite verole et des avantages de linoculation pour la prevenir. Memoires de Mathematiques et de Physique, Academie Royale des Sciences. 1760, 1-45.
5.
go back to reference Klein E, Laxminarayan R, Smith D, Gilligan C: Economic incentives and mathematical models of diseases. Environment and Development Economics. 2007, 12: 707-732. 10.1017/S1355770X0700383X.CrossRef Klein E, Laxminarayan R, Smith D, Gilligan C: Economic incentives and mathematical models of diseases. Environment and Development Economics. 2007, 12: 707-732. 10.1017/S1355770X0700383X.CrossRef
6.
go back to reference Bailey NTJ: The mathematical theory of infectious diseases and its applications. 1975, Hafner Press, New York Bailey NTJ: The mathematical theory of infectious diseases and its applications. 1975, Hafner Press, New York
7.
go back to reference Hethcote HW: Mathematics of Infectious Diseases. SIAM Review. 2000, 42: 599-653. 10.1137/S0036144500371907.CrossRef Hethcote HW: Mathematics of Infectious Diseases. SIAM Review. 2000, 42: 599-653. 10.1137/S0036144500371907.CrossRef
8.
go back to reference Galvani A, Reluga T, Chapman G: Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci USA. 2007, 104 (13): 5692-5697. 10.1073/pnas.0606774104.CrossRefPubMedPubMedCentral Galvani A, Reluga T, Chapman G: Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci USA. 2007, 104 (13): 5692-5697. 10.1073/pnas.0606774104.CrossRefPubMedPubMedCentral
9.
go back to reference Fine P, Clarkson J: Individual versus public priorities in the determination of optimal vaccination policies. Am J Epidemiol. 1986, 124: 1012-1020.PubMed Fine P, Clarkson J: Individual versus public priorities in the determination of optimal vaccination policies. Am J Epidemiol. 1986, 124: 1012-1020.PubMed
10.
go back to reference Geoffard P, Philipson T: Disease eradication: private versus public vaccination. American Economic Review. 1997, 87: 222-230. Geoffard P, Philipson T: Disease eradication: private versus public vaccination. American Economic Review. 1997, 87: 222-230.
11.
go back to reference d'Onofrio A, Manfredi P, Salinelli E: Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor Pop Biol. 2007, 71 (3): 301-317. 10.1016/j.tpb.2007.01.001.CrossRef d'Onofrio A, Manfredi P, Salinelli E: Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor Pop Biol. 2007, 71 (3): 301-317. 10.1016/j.tpb.2007.01.001.CrossRef
12.
go back to reference Barrett S: The smallpox eradication game. Public Choice. 2007, 130: 179-207. 10.1007/s11127-006-9079-z.CrossRef Barrett S: The smallpox eradication game. Public Choice. 2007, 130: 179-207. 10.1007/s11127-006-9079-z.CrossRef
13.
go back to reference Bauch CT, Galvani AP, Earn DJD: Group interest versus self interest in smallpox vaccination policy. Proc Natl Acad Sci. 2003, 100: 10564-10567. 10.1073/pnas.1731324100.CrossRefPubMedPubMedCentral Bauch CT, Galvani AP, Earn DJD: Group interest versus self interest in smallpox vaccination policy. Proc Natl Acad Sci. 2003, 100: 10564-10567. 10.1073/pnas.1731324100.CrossRefPubMedPubMedCentral
15.
go back to reference Bauch C: Imitation dynamics predict vaccinatingbehaviour. Proc R Soc Lond B. 2005, 272: 1669-1675. 10.1098/rspb.2005.3153.CrossRef Bauch C: Imitation dynamics predict vaccinatingbehaviour. Proc R Soc Lond B. 2005, 272: 1669-1675. 10.1098/rspb.2005.3153.CrossRef
16.
go back to reference Reluga TC, Bauch CT, Galvani AP: Evolving public perceptions and stability in vaccine uptake. Math Biosci. 2006, 204: 185-198. 10.1016/j.mbs.2006.08.015.CrossRefPubMed Reluga TC, Bauch CT, Galvani AP: Evolving public perceptions and stability in vaccine uptake. Math Biosci. 2006, 204: 185-198. 10.1016/j.mbs.2006.08.015.CrossRefPubMed
17.
go back to reference Vardavas R, Breban R, Blower S: Can Influenza epidemics be prevented by voluntary vaccination?. PLoS Computational Biology. 2007, 3 (5): e85-10.1371/journal.pcbi.0030085.CrossRefPubMedPubMedCentral Vardavas R, Breban R, Blower S: Can Influenza epidemics be prevented by voluntary vaccination?. PLoS Computational Biology. 2007, 3 (5): e85-10.1371/journal.pcbi.0030085.CrossRefPubMedPubMedCentral
18.
go back to reference Breban R, Vardavas R, Blower S: Mean-field analysis of an inductive reasoning game: application to in uenza vaccination. Physical Review Letters E. 2007, 76: 031127-CrossRef Breban R, Vardavas R, Blower S: Mean-field analysis of an inductive reasoning game: application to in uenza vaccination. Physical Review Letters E. 2007, 76: 031127-CrossRef
19.
go back to reference Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID: Smallpox and Its Eradication. 1988, World Health Organization, Geneva Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID: Smallpox and Its Eradication. 1988, World Health Organization, Geneva
20.
go back to reference Anderson RM, May RM: Infectious Diseases of Humans: Dynamics and Control. 1992, Oxford University Press, New York Anderson RM, May RM: Infectious Diseases of Humans: Dynamics and Control. 1992, Oxford University Press, New York
21.
go back to reference Anderson RM, May RM: Directly transmitted infectionsdiseases: control by vaccination. Science. 1982, 215 (4563): 1053-1060. 10.1126/science.7063839.CrossRefPubMed Anderson RM, May RM: Directly transmitted infectionsdiseases: control by vaccination. Science. 1982, 215 (4563): 1053-1060. 10.1126/science.7063839.CrossRefPubMed
23.
go back to reference Anderson RM, May RM: Infectious Diseases of Humans. 1991, Oxford University Press, Oxford Anderson RM, May RM: Infectious Diseases of Humans. 1991, Oxford University Press, Oxford
24.
go back to reference Pastor-Satorras R, Vespignani A: Epidemic spreading in scale-free networks. Physical Review Letters. 2001, 86: 3200-3203. 10.1103/PhysRevLett.86.3200.CrossRefPubMed Pastor-Satorras R, Vespignani A: Epidemic spreading in scale-free networks. Physical Review Letters. 2001, 86: 3200-3203. 10.1103/PhysRevLett.86.3200.CrossRefPubMed
25.
go back to reference Lloyd AL, May RM: How Viruses Spread Among Computers and People. Science. 2001, 291: 1316-10.1126/science.1061076.CrossRef Lloyd AL, May RM: How Viruses Spread Among Computers and People. Science. 2001, 291: 1316-10.1126/science.1061076.CrossRef
26.
go back to reference Bauch C: A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J Math Biol. 2002, 45: 375-395. 10.1007/s002850200153.CrossRefPubMed Bauch C: A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J Math Biol. 2002, 45: 375-395. 10.1007/s002850200153.CrossRefPubMed
27.
go back to reference Kretzschmar M: Deterministic and stochastic pair formation models for the spread of sexually transmitted diseases. J Biol Systems. 1995, 3: 789-801. 10.1142/S0218339095000721.CrossRef Kretzschmar M: Deterministic and stochastic pair formation models for the spread of sexually transmitted diseases. J Biol Systems. 1995, 3: 789-801. 10.1142/S0218339095000721.CrossRef
28.
go back to reference Kretzschmar M, Morris M: Measures of concurency in networks and the spread of infectious diseases. Math Biosci. 1996, 133: 165-195. 10.1016/0025-5564(95)00093-3.CrossRefPubMed Kretzschmar M, Morris M: Measures of concurency in networks and the spread of infectious diseases. Math Biosci. 1996, 133: 165-195. 10.1016/0025-5564(95)00093-3.CrossRefPubMed
29.
go back to reference Newman MJE: The spread of epidemic disease on networks. Physical Review E. 2002, 66 (016 128): Newman MJE: The spread of epidemic disease on networks. Physical Review E. 2002, 66 (016 128):
30.
go back to reference Meyers LA, Pourbohloul B, Newman ME, Skowronski DM, Brunham RC: Network theory and SARS: predicting outbreak diversity. J Theor Biol. 2005, 232: 71-81. 10.1016/j.jtbi.2004.07.026.CrossRefPubMed Meyers LA, Pourbohloul B, Newman ME, Skowronski DM, Brunham RC: Network theory and SARS: predicting outbreak diversity. J Theor Biol. 2005, 232: 71-81. 10.1016/j.jtbi.2004.07.026.CrossRefPubMed
31.
go back to reference van Baalen M, Rand D: The unit of selection in viscous populations and the evolution of altruism. J Theor Biol. 1998, 193: 631-10.1006/jtbi.1998.0730.CrossRefPubMed van Baalen M, Rand D: The unit of selection in viscous populations and the evolution of altruism. J Theor Biol. 1998, 193: 631-10.1006/jtbi.1998.0730.CrossRefPubMed
32.
go back to reference Keeling M, Grenfell B: Disease extinction and community size: Modeling the persistence of measles. Science. 1997, 275: 65-10.1126/science.275.5296.65.CrossRefPubMed Keeling M, Grenfell B: Disease extinction and community size: Modeling the persistence of measles. Science. 1997, 275: 65-10.1126/science.275.5296.65.CrossRefPubMed
33.
go back to reference May R, Lloyd A: Infection dynamics on scale-free networks. Physical Review E. 2001, 64 (6): 066122-10.1103/PhysRevE.64.066112.CrossRef May R, Lloyd A: Infection dynamics on scale-free networks. Physical Review E. 2001, 64 (6): 066122-10.1103/PhysRevE.64.066112.CrossRef
34.
go back to reference Keeling MJ: The effects of local spatial structure on epidemiology of invasions. Proc R Soc Lond B. 1999, 266: 859-10.1098/rspb.1999.0716.CrossRef Keeling MJ: The effects of local spatial structure on epidemiology of invasions. Proc R Soc Lond B. 1999, 266: 859-10.1098/rspb.1999.0716.CrossRef
35.
go back to reference Rand D: Correlation equations and pair approximations for spatial ecologies. 1999, Blackwell scienceCrossRef Rand D: Correlation equations and pair approximations for spatial ecologies. 1999, Blackwell scienceCrossRef
36.
go back to reference Bansal S, Grenfell BT, Meyers LA: When individual behavior matters: homogeneous and network models in epidemiology. J R Soc Interface. 2007, 4: 879-891. 10.1098/rsif.2007.1100.CrossRefPubMedPubMedCentral Bansal S, Grenfell BT, Meyers LA: When individual behavior matters: homogeneous and network models in epidemiology. J R Soc Interface. 2007, 4: 879-891. 10.1098/rsif.2007.1100.CrossRefPubMedPubMedCentral
37.
go back to reference Klovdahl AS, Dhofier Z, Oddy G, O'Hara J, Stoutjesdijk S, Whish A: Social networks in an urban area: first Canberra study. Aust N Z J Sociol. 1997, 13: 169-172. 10.1177/144078337701300215.CrossRef Klovdahl AS, Dhofier Z, Oddy G, O'Hara J, Stoutjesdijk S, Whish A: Social networks in an urban area: first Canberra study. Aust N Z J Sociol. 1997, 13: 169-172. 10.1177/144078337701300215.CrossRef
38.
go back to reference Eubank S, Guclu H, Kumar V, Marathe M, Srinivasan A, Toroczkai Z, Wang N: Modeling disease outbreaks in realistic urban social networks. Nature. 2004, 429: 180-184. 10.1038/nature02541.CrossRefPubMed Eubank S, Guclu H, Kumar V, Marathe M, Srinivasan A, Toroczkai Z, Wang N: Modeling disease outbreaks in realistic urban social networks. Nature. 2004, 429: 180-184. 10.1038/nature02541.CrossRefPubMed
39.
go back to reference Fuks H, Lawniczak A, Duchesne R: Effects of population mixing on the spread of SIR epidemics. European Physical Journal B-Condensed Matter. 2006, 50 (1–2): 209-214. 10.1140/epjb/e2006-00136-7. Fuks H, Lawniczak A, Duchesne R: Effects of population mixing on the spread of SIR epidemics. European Physical Journal B-Condensed Matter. 2006, 50 (1–2): 209-214. 10.1140/epjb/e2006-00136-7.
40.
go back to reference Leung I, Gibbs G, Bagnoli F, Sorathiya A, Lio P: Contact Network Modeling of Flu Epidemics. Eighth International Conference on Cellular Automata for Research and Industry. 2008 Leung I, Gibbs G, Bagnoli F, Sorathiya A, Lio P: Contact Network Modeling of Flu Epidemics. Eighth International Conference on Cellular Automata for Research and Industry. 2008
41.
go back to reference Altmann M: SIR epidemic models with dynamic partnerships. J Math Biol. 1995, 33: 661-675. 10.1007/BF00298647.CrossRefPubMed Altmann M: SIR epidemic models with dynamic partnerships. J Math Biol. 1995, 33: 661-675. 10.1007/BF00298647.CrossRefPubMed
42.
go back to reference Kretzschmar M, Reinking D, Brouwers H, van Zessen G, Jager J: Network models: from paradigm to mathematical tool. Modeling the AIDS Epidemic. Edited by: Kaplan EH, Brandeau M. 1994 Kretzschmar M, Reinking D, Brouwers H, van Zessen G, Jager J: Network models: from paradigm to mathematical tool. Modeling the AIDS Epidemic. Edited by: Kaplan EH, Brandeau M. 1994
43.
go back to reference Halloran M, Longini I, Nizam A, Yang Y: Containing bioterrorist smallpox. Science. 2002, 298 (5597): 1428-1432. 10.1126/science.1074674.CrossRefPubMed Halloran M, Longini I, Nizam A, Yang Y: Containing bioterrorist smallpox. Science. 2002, 298 (5597): 1428-1432. 10.1126/science.1074674.CrossRefPubMed
44.
go back to reference Durrett R, Levin S: The importance of being discrete (and spatial). Theor Pop Biol. 1994, 46: 363-10.1006/tpbi.1994.1032.CrossRef Durrett R, Levin S: The importance of being discrete (and spatial). Theor Pop Biol. 1994, 46: 363-10.1006/tpbi.1994.1032.CrossRef
45.
go back to reference Levin S, Grenfell B, Hastings A, Perelson A: Mathematical and computational challenges in population biology and ecosystems science. Science. 1997, 275: 334-10.1126/science.275.5298.334.CrossRefPubMed Levin S, Grenfell B, Hastings A, Perelson A: Mathematical and computational challenges in population biology and ecosystems science. Science. 1997, 275: 334-10.1126/science.275.5298.334.CrossRefPubMed
46.
go back to reference Matsuda H, Ogita N, Sasaki A, Sato K: Statistical mechanics of population. Prog Theor Phys. 1992, 88: 1035-10.1143/PTP.88.1035.CrossRef Matsuda H, Ogita N, Sasaki A, Sato K: Statistical mechanics of population. Prog Theor Phys. 1992, 88: 1035-10.1143/PTP.88.1035.CrossRef
47.
go back to reference Rand D, Keeling M, Wilson H: Invasion, stability, and evolution to criticality in spatially extended host-pathogen systems. Proc Roy Soc Lond B. 1995, 259: 55-10.1098/rspb.1995.0009.CrossRef Rand D, Keeling M, Wilson H: Invasion, stability, and evolution to criticality in spatially extended host-pathogen systems. Proc Roy Soc Lond B. 1995, 259: 55-10.1098/rspb.1995.0009.CrossRef
48.
go back to reference Nowak M, May R: Evolutionary games and spatial chaos. Nature. 1992, 359: 826-829. 10.1038/359826a0.CrossRef Nowak M, May R: Evolutionary games and spatial chaos. Nature. 1992, 359: 826-829. 10.1038/359826a0.CrossRef
49.
go back to reference Perisic A, Bauch C: Social contact networks and the free-rider problem in voluntary vaccination policy. PLoS Computational Biology. 2009, 5 (2): e1000280-10.1371/journal.pcbi.1000280.CrossRefPubMedPubMedCentral Perisic A, Bauch C: Social contact networks and the free-rider problem in voluntary vaccination policy. PLoS Computational Biology. 2009, 5 (2): e1000280-10.1371/journal.pcbi.1000280.CrossRefPubMedPubMedCentral
50.
go back to reference Eubank S, Kumar A, M M, et al: Structure of social contact networks and their impact on epidemics. AMS-DIMACS discrete methods in epidemiology. 2006, 70: 181-213. Eubank S, Kumar A, M M, et al: Structure of social contact networks and their impact on epidemics. AMS-DIMACS discrete methods in epidemiology. 2006, 70: 181-213.
51.
go back to reference Bagnoli F, Lio P, Sguanci L: Risk perception in epidemic modeling. Physical Review E Statistical, nonlinear, and soft matter physics. 2007, 76 (1): 1-061904. Bagnoli F, Lio P, Sguanci L: Risk perception in epidemic modeling. Physical Review E Statistical, nonlinear, and soft matter physics. 2007, 76 (1): 1-061904.
52.
go back to reference Bellaby P: Communcation and miscommunication of risk: understanding UK parents' attitudes to combined MMR vaccination. British Medical Journal. 2003, 327: 725-728. 10.1136/bmj.327.7417.725.CrossRefPubMedPubMedCentral Bellaby P: Communcation and miscommunication of risk: understanding UK parents' attitudes to combined MMR vaccination. British Medical Journal. 2003, 327: 725-728. 10.1136/bmj.327.7417.725.CrossRefPubMedPubMedCentral
53.
go back to reference Meltzer M: Introduction to health economics for physicians. The Lancet. 1992, 358 (9286): 993-998. 10.1016/S0140-6736(01)06107-4.CrossRef Meltzer M: Introduction to health economics for physicians. The Lancet. 1992, 358 (9286): 993-998. 10.1016/S0140-6736(01)06107-4.CrossRef
57.
go back to reference Fuks H, Lawniczak A: Individual-based lattice model for spatial spread of epidemics. Discrete Dynamics in Nature and Society. 2001, 6 (3): 191-200. 10.1155/S1026022601000206.CrossRef Fuks H, Lawniczak A: Individual-based lattice model for spatial spread of epidemics. Discrete Dynamics in Nature and Society. 2001, 6 (3): 191-200. 10.1155/S1026022601000206.CrossRef
58.
go back to reference Asch DA, Baron J, Hershey JC, Kunreuther H, Meszaros J, Ritov I, Spranca M: Omission bias and pertussis vaccination. Medical decision making. 1994, 14: 118-123. 10.1177/0272989X9401400204.CrossRefPubMed Asch DA, Baron J, Hershey JC, Kunreuther H, Meszaros J, Ritov I, Spranca M: Omission bias and pertussis vaccination. Medical decision making. 1994, 14: 118-123. 10.1177/0272989X9401400204.CrossRefPubMed
59.
go back to reference McDermott R, Fowler JH, Smirnov O: On the evolutionary origin of prospect theory preferences. The Journal of Politics. 2008, 70: 335-350. 10.1017/S0022381608080341.CrossRef McDermott R, Fowler JH, Smirnov O: On the evolutionary origin of prospect theory preferences. The Journal of Politics. 2008, 70: 335-350. 10.1017/S0022381608080341.CrossRef
60.
go back to reference Bolz G, Blanchard P, Kruger T: Simulating the epidemic dynamics of HIV-infection using stochastic processes over random graphs. International Conference on AIDS. 1989, 5: 151- Bolz G, Blanchard P, Kruger T: Simulating the epidemic dynamics of HIV-infection using stochastic processes over random graphs. International Conference on AIDS. 1989, 5: 151-
61.
go back to reference May RM: Simple Rules with Complex Dynamics. Science. 2000, 287: 601-602. 10.1126/science.287.5453.601.CrossRefPubMed May RM: Simple Rules with Complex Dynamics. Science. 2000, 287: 601-602. 10.1126/science.287.5453.601.CrossRefPubMed
62.
go back to reference Shaw LB, Schwartz IB: Fluctuating epidemics on adaptive networks. Physical Review E. 2008, 066101-10.1103/PhysRevE.77.066101. Shaw LB, Schwartz IB: Fluctuating epidemics on adaptive networks. Physical Review E. 2008, 066101-10.1103/PhysRevE.77.066101.
63.
go back to reference Mollison D: Epidemic Models: their Structure and Relation to Data. 1995, Cambridge University Press, Cambridge Mollison D: Epidemic Models: their Structure and Relation to Data. 1995, Cambridge University Press, Cambridge
64.
go back to reference Longini IM, Halloran ME, Nizam A, Yang Y, Xu S, Burke DS, Cummings DAT, Epstein JM: Containing a large bioterrorist smallpox attack: a computer simulation approach. International Journal of Infectious Diseases. 2007, 11: 98-108. 10.1016/j.ijid.2006.03.002.CrossRefPubMed Longini IM, Halloran ME, Nizam A, Yang Y, Xu S, Burke DS, Cummings DAT, Epstein JM: Containing a large bioterrorist smallpox attack: a computer simulation approach. International Journal of Infectious Diseases. 2007, 11: 98-108. 10.1016/j.ijid.2006.03.002.CrossRefPubMed
65.
go back to reference Nishiura H, Eichner M: Infectiousness of smallpox relative to disease age: estimates based on the transmission network and incubation period. Epidemiol Infect. 2007, 135: 1145-1150.PubMed Nishiura H, Eichner M: Infectiousness of smallpox relative to disease age: estimates based on the transmission network and incubation period. Epidemiol Infect. 2007, 135: 1145-1150.PubMed
66.
go back to reference Henderson D, Inglesby T, J B, et al: Smallpox as a biological weapon: medical and public health management. J Am Med Assoc. 1999, 281: 2127-2137. 10.1001/jama.281.22.2127.CrossRef Henderson D, Inglesby T, J B, et al: Smallpox as a biological weapon: medical and public health management. J Am Med Assoc. 1999, 281: 2127-2137. 10.1001/jama.281.22.2127.CrossRef
67.
go back to reference St-Arnaud J, Beaudet M, Tully P: Life Expectancy. Statistics Canada, Catalogue no. 82-003-XIE. 2005 St-Arnaud J, Beaudet M, Tully P: Life Expectancy. Statistics Canada, Catalogue no. 82-003-XIE. 2005
Metadata
Title
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks
Authors
Ana Perisic
Chris T Bauch
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2009
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-9-77

Other articles of this Issue 1/2009

BMC Infectious Diseases 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine