Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

A routine biomarker-based risk prediction model for metabolic syndrome in urban Han Chinese population

Authors: Wenchao Zhang, Qicai Chen, Zhongshang Yuan, Jing Liu, Zhaohui Du, Fang Tang, Hongying Jia, Fuzhong Xue, Chengqi Zhang

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Many MetS related biomarkers had been discovered, which provided the possibility for building the MetS prediction model. In this paper we aimed to develop a novel routine biomarker-based risk prediction model for MetS in urban Han Chinese population.

Methods

Exploring Factor analysis (EFA) was firstly conducted in MetS positive 13,345 males and 3,212 females respectively for extracting synthetic latent predictors (SLPs) from 11 routine biomarkers. Then, depending on the cohort with 5 years follow-up in 1,565 subjects (male 1,020 and female 545), a Cox model for predicting 5 years MetS was built by using SLPs as predictor; Area under the ROC curves (AUC) with 10 fold cross validation was used to evaluate its power. Absolute risk (AR) and relative absolute risk (RAR) were calculated to develop a risk matrix for visualization of risk assessment.

Results

Six SLPs were extracted by EFA from 11 routine health check-up biomarkers. Each of them reflected the specific pathogenesis of MetS, with inflammatory factor (IF) contributed by WBC & LC & NGC, erythrocyte parameter factor (EPF) by Hb & HCT, blood pressure factor (BPF) by SBP & DBP, lipid metabolism factor (LMF) by TG & HDL-C, obesity condition factor (OCF) by BMI, and glucose metabolism factor (GMF) by FBG with the total contribution of 81.55% and 79.65% for males and females respectively. The proposed metabolic syndrome synthetic predictor (MSP) based predict model demonstrated good performance for predicting 5 years MetS with the AUC of 0.802 (95% CI 0.776-0.826) in males and 0.902 (95% CI 0.874-0.925) in females respectively, even after 10 fold cross validation, AUC was still enough high with 0.796 (95% CI 0.770-0.821) in males and 0.897 (95% CI 0.868-0.921) in females. More importantly, the MSP based risk matrix with a series of risk warning index provided a feasible and practical tool for visualization of risk assessment in the prediction of MetS.

Conclusions

MetS could be explained by six SLPs in Chinese urban Han population. The proposed MSP based predict model demonstrated good performance for predicting 5 years MetS, and the MetS-based matrix provided a feasible and practical tool.
Appendix
Available only for authorised users
Literature
2.
go back to reference Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation. 2001;104(23):2855–64.CrossRefPubMed Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation. 2001;104(23):2855–64.CrossRefPubMed
3.
go back to reference Xi B, He D, Hu Y, Zhou D. Prevalence of metabolic syndrome and its influencing factors among the Chinese adults: the China Health and Nutrition Survey in 2009. Prev Med. 2013;57(6):867–71.CrossRefPubMedPubMedCentral Xi B, He D, Hu Y, Zhou D. Prevalence of metabolic syndrome and its influencing factors among the Chinese adults: the China Health and Nutrition Survey in 2009. Prev Med. 2013;57(6):867–71.CrossRefPubMedPubMedCentral
4.
go back to reference Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet. 2008;371(9628):1927–35.CrossRefPubMed Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet. 2008;371(9628):1927–35.CrossRefPubMed
5.
go back to reference Arnlov J, Ingelsson E, Sundstrom J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation. 2010;121(2):230–6.CrossRefPubMed Arnlov J, Ingelsson E, Sundstrom J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation. 2010;121(2):230–6.CrossRefPubMed
6.
go back to reference Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovasc Diabetol. 2011;10:102.CrossRefPubMedPubMedCentral Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovasc Diabetol. 2011;10:102.CrossRefPubMedPubMedCentral
7.
go back to reference Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007;49(4):403–14.CrossRefPubMed Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007;49(4):403–14.CrossRefPubMed
8.
go back to reference He Y, Jiang B, Wang J, Feng K, Chang Q, Fan L, et al. Prevalence of the metabolic syndrome and its relation to cardiovascular disease in an elderly Chinese population. J Am Coll Cardiol. 2006;47(8):1588–94.CrossRefPubMed He Y, Jiang B, Wang J, Feng K, Chang Q, Fan L, et al. Prevalence of the metabolic syndrome and its relation to cardiovascular disease in an elderly Chinese population. J Am Coll Cardiol. 2006;47(8):1588–94.CrossRefPubMed
9.
go back to reference Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.CrossRefPubMed Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.CrossRefPubMed
10.
go back to reference Singh AK, Kari JA. Metabolic syndrome and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(2):198–203.CrossRefPubMed Singh AK, Kari JA. Metabolic syndrome and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(2):198–203.CrossRefPubMed
11.
go back to reference Gluba A, Mikhailidis DP, Lip GY, Hannam S, Rysz J, Banach M. Metabolic syndrome and renal disease. Int J Cardiol. 2013;164(2):141–50.CrossRefPubMed Gluba A, Mikhailidis DP, Lip GY, Hannam S, Rysz J, Banach M. Metabolic syndrome and renal disease. Int J Cardiol. 2013;164(2):141–50.CrossRefPubMed
12.
go back to reference Mohan V, Sandeep S, Deepa M, Gokulakrishnan K, Datta M, Deepa R. A diabetes risk score helps identify metabolic syndrome and cardiovascular risk in Indians - the Chennai Urban Rural Epidemiology Study (CURES-38). Diabetes Obes Metab. 2007;9(3):337–43.CrossRefPubMed Mohan V, Sandeep S, Deepa M, Gokulakrishnan K, Datta M, Deepa R. A diabetes risk score helps identify metabolic syndrome and cardiovascular risk in Indians - the Chennai Urban Rural Epidemiology Study (CURES-38). Diabetes Obes Metab. 2007;9(3):337–43.CrossRefPubMed
13.
go back to reference Saaristo T, Peltonen M, Lindstrom J, Saarikoski L, Sundvall J, Eriksson JG, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab Vasc Dis Res. 2005;2(2):67–72.CrossRefPubMed Saaristo T, Peltonen M, Lindstrom J, Saarikoski L, Sundvall J, Eriksson JG, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab Vasc Dis Res. 2005;2(2):67–72.CrossRefPubMed
14.
go back to reference Heldgaard PE, Griffin SJ. Routinely collected general practice data aids identification of people with hyperglycaemia and metabolic syndrome. Diabet Med. 2006;23(9):996–1002.CrossRefPubMed Heldgaard PE, Griffin SJ. Routinely collected general practice data aids identification of people with hyperglycaemia and metabolic syndrome. Diabet Med. 2006;23(9):996–1002.CrossRefPubMed
15.
go back to reference Hsiao FC, Wu CZ, Hsieh CH, He CT, Hung YJ, Pei D. Chinese metabolic syndrome risk score. South Med J. 2009;102(2):159–64.CrossRefPubMed Hsiao FC, Wu CZ, Hsieh CH, He CT, Hung YJ, Pei D. Chinese metabolic syndrome risk score. South Med J. 2009;102(2):159–64.CrossRefPubMed
16.
go back to reference Yang XH, Tao QS, Sun F, Cao CK, Zhan SY. Setting up a risk prediction model on metabolic syndrome among 35–74 year-olds based on the Taiwan MJ Health-checkup Database. Zhonghua Liu Xing Bing Xue Za Zhi. 2013;34(9):874–8.PubMed Yang XH, Tao QS, Sun F, Cao CK, Zhan SY. Setting up a risk prediction model on metabolic syndrome among 35–74 year-olds based on the Taiwan MJ Health-checkup Database. Zhonghua Liu Xing Bing Xue Za Zhi. 2013;34(9):874–8.PubMed
17.
go back to reference Kawamoto R, Tabara Y, Kohara K, Miki T, Kusunoki T, Abe M, et al. Hematological parameters are associated with metabolic syndrome in Japanese community-dwelling persons. Endocrine. 2013;43(2):334–41.CrossRefPubMed Kawamoto R, Tabara Y, Kohara K, Miki T, Kusunoki T, Abe M, et al. Hematological parameters are associated with metabolic syndrome in Japanese community-dwelling persons. Endocrine. 2013;43(2):334–41.CrossRefPubMed
18.
go back to reference Lohsoonthorn V, Jiamjarasrungsi W, Williams MA. Association of Hematological Parameters with Clustered Components of Metabolic Syndrome among Professional and Office Workers in Bangkok, Thailand. Diabetes Metab Syndr. 2007;1(3):143–9.CrossRefPubMedPubMedCentral Lohsoonthorn V, Jiamjarasrungsi W, Williams MA. Association of Hematological Parameters with Clustered Components of Metabolic Syndrome among Professional and Office Workers in Bangkok, Thailand. Diabetes Metab Syndr. 2007;1(3):143–9.CrossRefPubMedPubMedCentral
19.
go back to reference Wu S, Lin H, Zhang C, Zhang Q, Zhang D, Zhang Y, et al. Association between erythrocyte parameters and metabolic syndrome in urban Han Chinese: a longitudinal cohort study. BMC Public Health. 2013;13:989.CrossRefPubMedPubMedCentral Wu S, Lin H, Zhang C, Zhang Q, Zhang D, Zhang Y, et al. Association between erythrocyte parameters and metabolic syndrome in urban Han Chinese: a longitudinal cohort study. BMC Public Health. 2013;13:989.CrossRefPubMedPubMedCentral
20.
go back to reference Chen W, Srinivasan SR, Xu J, Berenson GS. Black-white divergence in the relation of white blood cell count to metabolic syndrome in preadolescents, adolescents, and young adults: the Bogalusa Heart Study. Diabetes Care. 2010;33(11):2474–6.CrossRefPubMedPubMedCentral Chen W, Srinivasan SR, Xu J, Berenson GS. Black-white divergence in the relation of white blood cell count to metabolic syndrome in preadolescents, adolescents, and young adults: the Bogalusa Heart Study. Diabetes Care. 2010;33(11):2474–6.CrossRefPubMedPubMedCentral
21.
go back to reference Fan X, Liu EY, Freudenreich O, Park JH, Liu D, Wang J, et al. Higher white blood cell counts are associated with an increased risk for metabolic syndrome and more severe psychopathology in non-diabetic patients with schizophrenia. Schizophr Res. 2010;118(1–3):211–7.CrossRefPubMed Fan X, Liu EY, Freudenreich O, Park JH, Liu D, Wang J, et al. Higher white blood cell counts are associated with an increased risk for metabolic syndrome and more severe psychopathology in non-diabetic patients with schizophrenia. Schizophr Res. 2010;118(1–3):211–7.CrossRefPubMed
22.
go back to reference Lee YJ, Shin YH, Kim JK, Shim JY, Kang DR, Lee HR. Metabolic syndrome and its association with white blood cell count in children and adolescents in Korea: the 2005 Korean National Health and Nutrition Examination Survey. Nutr Metab Cardiovasc Dis. 2010;20(3):165–72.CrossRefPubMed Lee YJ, Shin YH, Kim JK, Shim JY, Kang DR, Lee HR. Metabolic syndrome and its association with white blood cell count in children and adolescents in Korea: the 2005 Korean National Health and Nutrition Examination Survey. Nutr Metab Cardiovasc Dis. 2010;20(3):165–72.CrossRefPubMed
23.
go back to reference Meng W, Zhang C, Zhang Q, Song X, Lin H, Zhang D, et al. Association between leukocyte and metabolic syndrome in urban Han Chinese: a longitudinal cohort study. PLoS One. 2012;7(11):e49875.CrossRefPubMedPubMedCentral Meng W, Zhang C, Zhang Q, Song X, Lin H, Zhang D, et al. Association between leukocyte and metabolic syndrome in urban Han Chinese: a longitudinal cohort study. PLoS One. 2012;7(11):e49875.CrossRefPubMedPubMedCentral
24.
go back to reference Nakanishi N, Suzuki K, Tatara K. White blood cell count and clustered features of metabolic syndrome in Japanese male office workers. Occup Med (Lond). 2002;52(4):213–8.CrossRef Nakanishi N, Suzuki K, Tatara K. White blood cell count and clustered features of metabolic syndrome in Japanese male office workers. Occup Med (Lond). 2002;52(4):213–8.CrossRef
25.
go back to reference Oda E, Kawai R. Comparison between high-sensitivity C-reactive protein (hs-CRP) and white blood cell count (WBC) as an inflammatory component of metabolic syndrome in Japanese. Intern Med. 2010;49(2):117–24.CrossRefPubMed Oda E, Kawai R. Comparison between high-sensitivity C-reactive protein (hs-CRP) and white blood cell count (WBC) as an inflammatory component of metabolic syndrome in Japanese. Intern Med. 2010;49(2):117–24.CrossRefPubMed
26.
go back to reference Oda E, Kawai R. The prevalence of metabolic syndrome and diabetes increases through the quartiles of white blood cell count in Japanese men and women. Intern Med. 2009;48(13):1127–34.CrossRefPubMed Oda E, Kawai R. The prevalence of metabolic syndrome and diabetes increases through the quartiles of white blood cell count in Japanese men and women. Intern Med. 2009;48(13):1127–34.CrossRefPubMed
27.
go back to reference Park JT, Chang TI, Kim DK, Choi HY, Lee JE, Kim HW, et al. Association of white blood cell count with metabolic syndrome in patients undergoing peritoneal dialysis. Metabolism. 2009;58(10):1379–85.CrossRefPubMed Park JT, Chang TI, Kim DK, Choi HY, Lee JE, Kim HW, et al. Association of white blood cell count with metabolic syndrome in patients undergoing peritoneal dialysis. Metabolism. 2009;58(10):1379–85.CrossRefPubMed
28.
go back to reference Sugimori H, Tomoda F, Koike T, Kinuno H, Kurosaki H, Masutani T, et al. Blood rheology and platelet function in untreated early-stage essential hypertensives complicated with metabolic syndrome. Int J Hypertens. 2012;2012:109830.CrossRefPubMedPubMedCentral Sugimori H, Tomoda F, Koike T, Kinuno H, Kurosaki H, Masutani T, et al. Blood rheology and platelet function in untreated early-stage essential hypertensives complicated with metabolic syndrome. Int J Hypertens. 2012;2012:109830.CrossRefPubMedPubMedCentral
29.
go back to reference Kim JA, Choi YS, Hong JI, Kim SH, Jung HH, Kim SM. Association of metabolic syndrome with white blood cell subtype and red blood cells. Endocr J. 2006;53(1):133–9.CrossRefPubMed Kim JA, Choi YS, Hong JI, Kim SH, Jung HH, Kim SM. Association of metabolic syndrome with white blood cell subtype and red blood cells. Endocr J. 2006;53(1):133–9.CrossRefPubMed
30.
go back to reference Lu YH, Lu JM, Wang SY, Li CL, Liu LS, Zheng RP, et al. Comparison of the diagnostic criteria of metabolic syndrome by International Diabetes Federation and that by Chinese Medical Association Diabetes Branch. Zhonghua Yi Xue Za Zhi. 2006;86(6):386–9.PubMed Lu YH, Lu JM, Wang SY, Li CL, Liu LS, Zheng RP, et al. Comparison of the diagnostic criteria of metabolic syndrome by International Diabetes Federation and that by Chinese Medical Association Diabetes Branch. Zhonghua Yi Xue Za Zhi. 2006;86(6):386–9.PubMed
31.
go back to reference Normann J, Mueller M, Biener M, Vafaie M, Katus HA, Giannitsis E. Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am Heart J. 2012;164(5):698–705.CrossRefPubMed Normann J, Mueller M, Biener M, Vafaie M, Katus HA, Giannitsis E. Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am Heart J. 2012;164(5):698–705.CrossRefPubMed
32.
go back to reference Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006;163(7):670–5.CrossRefPubMedPubMedCentral Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006;163(7):670–5.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Sawada K, Krantz SB, Dessypris EN, Koury ST, Sawyer ST. Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. J Clin Invest. 1989;83(5):1701–9.CrossRefPubMedPubMedCentral Sawada K, Krantz SB, Dessypris EN, Koury ST, Sawyer ST. Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. J Clin Invest. 1989;83(5):1701–9.CrossRefPubMedPubMedCentral
36.
go back to reference Stonestreet BS, Goldstein M, Oh W, Widness JA. Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol. 1989;257(5 Pt 2):R1199–204.PubMed Stonestreet BS, Goldstein M, Oh W, Widness JA. Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol. 1989;257(5 Pt 2):R1199–204.PubMed
37.
go back to reference Reaven GM, Chen YD. Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev. 1988;4(7):639–52.CrossRefPubMed Reaven GM, Chen YD. Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev. 1988;4(7):639–52.CrossRefPubMed
38.
go back to reference Ferrannini E, Haffner SM, Mitchell BD, Stern MP. Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia. 1991;34(6):416–22.CrossRefPubMed Ferrannini E, Haffner SM, Mitchell BD, Stern MP. Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia. 1991;34(6):416–22.CrossRefPubMed
39.
go back to reference Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486-2497. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486-2497.
40.
go back to reference Zinchuk VV, Pronko TP, Lis MA. Blood oxygen transport and endothelial dysfunction in patients with arterial hypertension. Clin Physiol Funct Imaging. 2004;24(4):205–11.CrossRefPubMed Zinchuk VV, Pronko TP, Lis MA. Blood oxygen transport and endothelial dysfunction in patients with arterial hypertension. Clin Physiol Funct Imaging. 2004;24(4):205–11.CrossRefPubMed
41.
go back to reference Kelm M, Rath J. Endothelial dysfunction in human coronary circulation: relevance of the L-arginine-NO pathway. Basic Res Cardiol. 2001;96(2):107–27.CrossRefPubMed Kelm M, Rath J. Endothelial dysfunction in human coronary circulation: relevance of the L-arginine-NO pathway. Basic Res Cardiol. 2001;96(2):107–27.CrossRefPubMed
42.
go back to reference Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145.CrossRefPubMed Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145.CrossRefPubMed
43.
go back to reference Wei Y, Liu G, Yang J, Zheng R, Jiang L, Bao P. The association between metabolic syndrome and vascular endothelial dysfunction in adolescents. Exp Ther Med. 2013;5(6):1663–6.PubMedPubMedCentral Wei Y, Liu G, Yang J, Zheng R, Jiang L, Bao P. The association between metabolic syndrome and vascular endothelial dysfunction in adolescents. Exp Ther Med. 2013;5(6):1663–6.PubMedPubMedCentral
44.
go back to reference Facchini FS, Carantoni M, Jeppesen J, Reaven GM. Hematocrit and hemoglobin are independently related to insulin resistance and compensatory hyperinsulinemia in healthy, non-obese men and women. Metabolism. 1998;47(7):831–5.CrossRefPubMed Facchini FS, Carantoni M, Jeppesen J, Reaven GM. Hematocrit and hemoglobin are independently related to insulin resistance and compensatory hyperinsulinemia in healthy, non-obese men and women. Metabolism. 1998;47(7):831–5.CrossRefPubMed
45.
go back to reference Nakanishi N, Suzuki K, Tatara K. Haematocrit and risk of development of Type 2 diabetes mellitus in middle-aged Japanese men. Diabet Med. 2004;21(5):476–82.CrossRefPubMed Nakanishi N, Suzuki K, Tatara K. Haematocrit and risk of development of Type 2 diabetes mellitus in middle-aged Japanese men. Diabet Med. 2004;21(5):476–82.CrossRefPubMed
46.
go back to reference Tamariz LJ, Young JH, Pankow JS, Yeh HC, Schmidt MI, Astor B, et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2008;168(10):1153–60.CrossRefPubMedPubMedCentral Tamariz LJ, Young JH, Pankow JS, Yeh HC, Schmidt MI, Astor B, et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2008;168(10):1153–60.CrossRefPubMedPubMedCentral
47.
go back to reference Park E, Kim J. Gender- and Age-Specific Prevalence of Metabolic Syndrome Among Korean Adults: Analysis of the Fifth Korean National Health and Nutrition Examination Survey. J Cardiovasc Nurs. 2014. [Epub ahead of print] Park E, Kim J. Gender- and Age-Specific Prevalence of Metabolic Syndrome Among Korean Adults: Analysis of the Fifth Korean National Health and Nutrition Examination Survey. J Cardiovasc Nurs. 2014. [Epub ahead of print]
48.
go back to reference Poehlman ET, Toth MJ, Gardner AW. Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med. 1995;123(9):673–5.CrossRefPubMed Poehlman ET, Toth MJ, Gardner AW. Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med. 1995;123(9):673–5.CrossRefPubMed
49.
go back to reference Kannel WB, Cupples LA, Ramaswami R, Stokes JR, Kreger BE, Higgins M. Regional obesity and risk of cardiovascular disease; the Framingham Study. J Clin Epidemiol. 1991;44(2):183–90.CrossRefPubMed Kannel WB, Cupples LA, Ramaswami R, Stokes JR, Kreger BE, Higgins M. Regional obesity and risk of cardiovascular disease; the Framingham Study. J Clin Epidemiol. 1991;44(2):183–90.CrossRefPubMed
50.
go back to reference Rexrode KM, Carey VJ, Hennekens CH, Walters EE, Colditz GA, Stampfer MJ, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–8.CrossRefPubMed Rexrode KM, Carey VJ, Hennekens CH, Walters EE, Colditz GA, Stampfer MJ, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–8.CrossRefPubMed
51.
go back to reference Crawford SL, Casey VA, Avis NE, McKinlay SM. A longitudinal study of weight and the menopause transition: results from the Massachusetts Women's Health Study. Menopause. 2000;7(2):96–104.CrossRefPubMed Crawford SL, Casey VA, Avis NE, McKinlay SM. A longitudinal study of weight and the menopause transition: results from the Massachusetts Women's Health Study. Menopause. 2000;7(2):96–104.CrossRefPubMed
52.
go back to reference Poehlman ET, Toth MJ, Ades PA, Rosen CJ. Menopause-associated changes in plasma lipids, insulin-like growth factor I and blood pressure: a longitudinal study. Eur J Clin Invest. 1997;27(4):322–6.CrossRefPubMed Poehlman ET, Toth MJ, Ades PA, Rosen CJ. Menopause-associated changes in plasma lipids, insulin-like growth factor I and blood pressure: a longitudinal study. Eur J Clin Invest. 1997;27(4):322–6.CrossRefPubMed
53.
go back to reference Gierach GL, Johnson BD, Bairey MC, Kelsey SF, Bittner V, Olson MB, et al. Hypertension, menopause, and coronary artery disease risk in the Women's Ischemia Syndrome Evaluation (WISE) Study. J Am Coll Cardiol. 2006;47(3 Suppl):S50–8.CrossRefPubMed Gierach GL, Johnson BD, Bairey MC, Kelsey SF, Bittner V, Olson MB, et al. Hypertension, menopause, and coronary artery disease risk in the Women's Ischemia Syndrome Evaluation (WISE) Study. J Am Coll Cardiol. 2006;47(3 Suppl):S50–8.CrossRefPubMed
54.
55.
go back to reference Staessen JA, Ginocchio G, Thijs L, Fagard R. Conventional and ambulatory blood pressure and menopause in a prospective population study. J Hum Hypertens. 1997;11(8):507–14.CrossRefPubMed Staessen JA, Ginocchio G, Thijs L, Fagard R. Conventional and ambulatory blood pressure and menopause in a prospective population study. J Hum Hypertens. 1997;11(8):507–14.CrossRefPubMed
56.
go back to reference Schubert CM, Rogers NL, Remsberg KE, Sun SS, Chumlea WC, Demerath EW, et al. Lipids, lipoproteins, lifestyle, adiposity and fat-free mass during middle age: the Fels Longitudinal Study. Int J Obes (Lond). 2006;30(2):251–60.CrossRef Schubert CM, Rogers NL, Remsberg KE, Sun SS, Chumlea WC, Demerath EW, et al. Lipids, lipoproteins, lifestyle, adiposity and fat-free mass during middle age: the Fels Longitudinal Study. Int J Obes (Lond). 2006;30(2):251–60.CrossRef
Metadata
Title
A routine biomarker-based risk prediction model for metabolic syndrome in urban Han Chinese population
Authors
Wenchao Zhang
Qicai Chen
Zhongshang Yuan
Jing Liu
Zhaohui Du
Fang Tang
Hongying Jia
Fuzhong Xue
Chengqi Zhang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-1424-z

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue