Skip to main content
Top
Published in: Digestive Diseases and Sciences 2/2016

01-02-2016 | Original Article

A Role for MYC in Lithium-Stimulated Repair of the Colonic Epithelium After DSS-Induced Damage in Mice

Authors: Wesley M. Raup-Konsavage, Timothy K. Cooper, Gregory S. Yochum

Published in: Digestive Diseases and Sciences | Issue 2/2016

Login to get access

Abstract

Background

Chronic inflammation disrupts the colonic epithelial layer in patients afflicted by ulcerative colitis (UC). The use of inhibitors of glycogen synthase kinase three beta (GSK3β) has proven efficacious to mitigate disease symptoms in rodent models of UC by reducing the pro-inflammatory response. Less is known about whether these inhibitors promote colonic regeneration by stimulating proliferation of colonic epithelial cells.

Aims

We investigated whether delivery of the GSK3β inhibitor, lithium chloride (LiCl), during the recovery period from acute DSS-induced colitis in mice promoted colonic regeneration and ameliorated disease symptoms. We also tested whether the c-MYC transcription factor (MYC) was involved in this response.

Methods

Acute colitis was induced by administration of 2.5 % dextran sodium sulfate (DSS) to wild-type C57BL/6 mice for 5 days. During the recovery period, mice received a daily intraperitoneal (IP) injection of LiCl or 1X PBS as a control. Mice were weighed, colon lengths measured, disease activity index (DAI) scores were assessed, and histological analyses were performed on colonic sections. We analyzed transcripts and proteins in purified preparations of the colonic epithelium. We delivered the MYC inhibitor 10058-F4 via IP injection to assess the role of MYC in colonic regeneration.

Results

Lithium treatments promoted recovery from acute DSS-induced damage by increasing expression of Myc transcripts, MYC proteins, and expression of a subset of Wnt/MYC target genes in the colonic epithelium. Inhibiting MYC function with 10058-F4 blunted the lithium response.

Conclusions

By inducing Myc expression in the colonic epithelium, lithium promotes colonic regeneration after DSS-induced colitis. Therefore, the use of lithium may be of therapeutic value to manage individuals afflicted by UC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–1619.CrossRefPubMed Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–1619.CrossRefPubMed
2.
go back to reference Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11:9–20.CrossRefPubMed Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11:9–20.CrossRefPubMed
3.
go back to reference Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61:918–932.CrossRefPubMed Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61:918–932.CrossRefPubMed
5.
go back to reference Langholz E, Munkholm P, Davidsen M, Binder V. Course of ulcerative-colitis—analysis of changes in disease-activity over years. Gastroenterology. 1994;107:3–11.PubMed Langholz E, Munkholm P, Davidsen M, Binder V. Course of ulcerative-colitis—analysis of changes in disease-activity over years. Gastroenterology. 1994;107:3–11.PubMed
7.
go back to reference Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell. 2010;7:656–670.CrossRefPubMed Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell. 2010;7:656–670.CrossRefPubMed
9.
go back to reference Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do? regulation of transcription by the Wnt/beta-catenin pathway. Acta Physiol (Oxf). 2011;204:74–109.CrossRef Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do? regulation of transcription by the Wnt/beta-catenin pathway. Acta Physiol (Oxf). 2011;204:74–109.CrossRef
10.
go back to reference He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512.CrossRefPubMed He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512.CrossRefPubMed
11.
go back to reference Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10:276–286.CrossRefPubMed Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10:276–286.CrossRefPubMed
12.
go back to reference Yochum GS, Cleland R, Goodman RH. A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol Cell Biol. 2008;28:7368–7379.PubMedCentralCrossRefPubMed Yochum GS, Cleland R, Goodman RH. A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol Cell Biol. 2008;28:7368–7379.PubMedCentralCrossRefPubMed
13.
go back to reference Ashton GH, Morton JP, Myant K, et al. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell. 2010;19:259–269.PubMedCentralCrossRefPubMed Ashton GH, Morton JP, Myant K, et al. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell. 2010;19:259–269.PubMedCentralCrossRefPubMed
14.
go back to reference Yochum GS, McWeeney S, Rajaraman V, Cleland R, Peters S, Goodman RH. Serial analysis of chromatin occupancy identifies beta-catenin target genes in colorectal carcinoma cells. Proc Natl Acad Sci USA. 2007;104:3324–3329.PubMedCentralCrossRefPubMed Yochum GS, McWeeney S, Rajaraman V, Cleland R, Peters S, Goodman RH. Serial analysis of chromatin occupancy identifies beta-catenin target genes in colorectal carcinoma cells. Proc Natl Acad Sci USA. 2007;104:3324–3329.PubMedCentralCrossRefPubMed
15.
go back to reference Konsavage WM Jr, Jin G, Yochum GS. The Myc 3′ Wnt-responsive element regulates homeostasis and regeneration in the mouse intestinal tract. Mol Cell Biol. 2012;32:3891–3902.PubMedCentralCrossRefPubMed Konsavage WM Jr, Jin G, Yochum GS. The Myc 3′ Wnt-responsive element regulates homeostasis and regeneration in the mouse intestinal tract. Mol Cell Biol. 2012;32:3891–3902.PubMedCentralCrossRefPubMed
16.
go back to reference Konsavage WM Jr, Roper JN, Ishmael FT, Yochum GS. The Myc 3′ Wnt responsive element regulates neutrophil recruitment after acute colonic injury in mice. Dig Dis Sci. 2013;58:2858–2867.PubMedCentralCrossRefPubMed Konsavage WM Jr, Roper JN, Ishmael FT, Yochum GS. The Myc 3′ Wnt responsive element regulates neutrophil recruitment after acute colonic injury in mice. Dig Dis Sci. 2013;58:2858–2867.PubMedCentralCrossRefPubMed
17.
go back to reference Daneshmand A, Rahimian R, Mohammadi H, et al. Protective effects of lithium on acetic acid-induced colitis in rats. Dig Dis Sci. 2009;54:1901–1907.CrossRefPubMed Daneshmand A, Rahimian R, Mohammadi H, et al. Protective effects of lithium on acetic acid-induced colitis in rats. Dig Dis Sci. 2009;54:1901–1907.CrossRefPubMed
18.
go back to reference Hofmann C, Dunger N, Scholmerich J, Falk W, Obermeier F. Glycogen synthase kinase 3-beta: a master regulator of toll-like receptor-mediated chronic intestinal inflammation. Inflamm Bowel Dis. 2010;16:1850–1858.CrossRefPubMed Hofmann C, Dunger N, Scholmerich J, Falk W, Obermeier F. Glycogen synthase kinase 3-beta: a master regulator of toll-like receptor-mediated chronic intestinal inflammation. Inflamm Bowel Dis. 2010;16:1850–1858.CrossRefPubMed
19.
go back to reference van der Logt EM, Blokzijl T, Diepstra A, et al. Lithium induces intestinothrophic effects in the healthy colon, but does not ameliorate dextran sulfate sodium-induced colitis in mice. e-SPEN J. 2011;7:e16–e22.CrossRef van der Logt EM, Blokzijl T, Diepstra A, et al. Lithium induces intestinothrophic effects in the healthy colon, but does not ameliorate dextran sulfate sodium-induced colitis in mice. e-SPEN J. 2011;7:e16–e22.CrossRef
20.
go back to reference Whittle BJ, Varga C, Posa A, Molnar A, Collin M, Thiemermann C. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta. Br J Pharmacol. 2006;147:575–582.PubMedCentralCrossRefPubMed Whittle BJ, Varga C, Posa A, Molnar A, Collin M, Thiemermann C. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta. Br J Pharmacol. 2006;147:575–582.PubMedCentralCrossRefPubMed
21.
go back to reference Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc. 2009;131:7390–7401.CrossRefPubMed Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc. 2009;131:7390–7401.CrossRefPubMed
22.
go back to reference Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–546.CrossRefPubMed Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–546.CrossRefPubMed
23.
go back to reference Zirath H, Frenzel A, Oliynyk G, et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci USA. 2013;110:10258–10263.PubMedCentralCrossRefPubMed Zirath H, Frenzel A, Oliynyk G, et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci USA. 2013;110:10258–10263.PubMedCentralCrossRefPubMed
24.
go back to reference Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investigation J Tech Methods Pathol. 1993;69:238–249. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investigation J Tech Methods Pathol. 1993;69:238–249.
25.
go back to reference Ju J, Hao X, Lee MJ, et al. A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer prevention research. 2009;2:143–152.PubMedCentralCrossRefPubMed Ju J, Hao X, Lee MJ, et al. A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer prevention research. 2009;2:143–152.PubMedCentralCrossRefPubMed
26.
go back to reference Bottomly D, Kyler SL, McWeeney SK, Yochum GS. Identification of {beta}-catenin binding regions in colon cancer cells using ChIP-Seq. Nucleic Acids Res. 2010;38:5735–5745.PubMedCentralCrossRefPubMed Bottomly D, Kyler SL, McWeeney SK, Yochum GS. Identification of {beta}-catenin binding regions in colon cancer cells using ChIP-Seq. Nucleic Acids Res. 2010;38:5735–5745.PubMedCentralCrossRefPubMed
29.
go back to reference Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliver Rev. 2007;59:1073–1083.CrossRef Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliver Rev. 2007;59:1073–1083.CrossRef
30.
go back to reference Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997;42:1571–1579.CrossRefPubMed Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997;42:1571–1579.CrossRefPubMed
31.
go back to reference Greco V, Lauro G, Fabbrini A, Torsoli A. Histochemistry of the colonic epithelial mucins in normal subjects and in patients with ulcerative colitis. A qualitative and histophotometric investigation. Gut. 1967;8:491–496.PubMedCentralCrossRefPubMed Greco V, Lauro G, Fabbrini A, Torsoli A. Histochemistry of the colonic epithelial mucins in normal subjects and in patients with ulcerative colitis. A qualitative and histophotometric investigation. Gut. 1967;8:491–496.PubMedCentralCrossRefPubMed
32.
go back to reference Melgar S, Karlsson A, Michaelsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol. 2005;288:G1328–1338. Melgar S, Karlsson A, Michaelsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol. 2005;288:G1328–1338.
33.
go back to reference Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133:1710–1715.PubMed Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133:1710–1715.PubMed
34.
go back to reference Chang WW, Leblond CP. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am J Anat. 1971;131:73–99.CrossRefPubMed Chang WW, Leblond CP. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am J Anat. 1971;131:73–99.CrossRefPubMed
35.
go back to reference Karam SM. Lineage commitment and maturation of epithelial cells in the gut. Front Biosci. 1999;4:D286–298.CrossRefPubMed Karam SM. Lineage commitment and maturation of epithelial cells in the gut. Front Biosci. 1999;4:D286–298.CrossRefPubMed
36.
go back to reference Yochum GS, Sherrick CM, Macpartlin M, Goodman RH. A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci USA. 2010;107:145–150.PubMedCentralCrossRefPubMed Yochum GS, Sherrick CM, Macpartlin M, Goodman RH. A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci USA. 2010;107:145–150.PubMedCentralCrossRefPubMed
38.
go back to reference Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278:51606–51612.CrossRefPubMed Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278:51606–51612.CrossRefPubMed
39.
go back to reference Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–2514.PubMedCentralCrossRefPubMed Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–2514.PubMedCentralCrossRefPubMed
40.
go back to reference Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446:676–679.CrossRefPubMed Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446:676–679.CrossRefPubMed
41.
go back to reference Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews. Mol Cell Biol. 2014;15:19–33. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews. Mol Cell Biol. 2014;15:19–33.
42.
go back to reference Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007.CrossRefPubMed Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007.CrossRefPubMed
43.
go back to reference Reinisch C, Kandutsch S, Uthman A, Pammer J. BMI-1: a protein expressed in stem cells, specialized cells and tumors of the gastrointestinal tract. Histol Histopathol. 2006;21:1143–1149.PubMed Reinisch C, Kandutsch S, Uthman A, Pammer J. BMI-1: a protein expressed in stem cells, specialized cells and tumors of the gastrointestinal tract. Histol Histopathol. 2006;21:1143–1149.PubMed
45.
go back to reference Wong VW, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biol. 2012;14:401–408.PubMedCentralCrossRefPubMed Wong VW, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biol. 2012;14:401–408.PubMedCentralCrossRefPubMed
46.
go back to reference van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137:15–17.CrossRefPubMed van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137:15–17.CrossRefPubMed
47.
go back to reference Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–1424.PubMedCentralCrossRefPubMed Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–1424.PubMedCentralCrossRefPubMed
48.
go back to reference Mccormack SA, Viar MJ, Johnson LR. Migration of Iec-6 cells—a model for mucosal healing. Am J Physiol. 1992;263:G426–G435.PubMed Mccormack SA, Viar MJ, Johnson LR. Migration of Iec-6 cells—a model for mucosal healing. Am J Physiol. 1992;263:G426–G435.PubMed
49.
go back to reference Liu L, Rao JN, Zou TT, et al. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am J Physiol-Cell. 2012;302:C277–C285.CrossRef Liu L, Rao JN, Zou TT, et al. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am J Physiol-Cell. 2012;302:C277–C285.CrossRef
50.
go back to reference Wang H, Hammoudeh DI, Follis AV, et al. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther. 2007;6:2399–2408.CrossRefPubMed Wang H, Hammoudeh DI, Follis AV, et al. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther. 2007;6:2399–2408.CrossRefPubMed
52.
go back to reference Zinin N, Adameyko I, Wilhelm M, et al. MYC proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Rep. 2014;15:383–391.PubMedCentralCrossRefPubMed Zinin N, Adameyko I, Wilhelm M, et al. MYC proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Rep. 2014;15:383–391.PubMedCentralCrossRefPubMed
53.
go back to reference Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–264.CrossRefPubMed Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–264.CrossRefPubMed
54.
go back to reference Park-Min KH, Lim E, Lee MJ, et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat Commun. 2014;5:5418.PubMedCentralCrossRefPubMed Park-Min KH, Lim E, Lee MJ, et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat Commun. 2014;5:5418.PubMedCentralCrossRefPubMed
55.
go back to reference Koch S, Nava P, Addis Cet al. The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology. 2011;141:259–268, 268 e251–258. Koch S, Nava P, Addis Cet al. The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology. 2011;141:259–268, 268 e251–258.
56.
go back to reference Alexander RJ, Panja A, Kaplan-Liss E, Mayer L, Raicht RF. Expression of protooncogene-encoded mRNA by colonic epithelial cells in inflammatory bowel disease. Dig Dis Sci. 1996;41:660–669.CrossRefPubMed Alexander RJ, Panja A, Kaplan-Liss E, Mayer L, Raicht RF. Expression of protooncogene-encoded mRNA by colonic epithelial cells in inflammatory bowel disease. Dig Dis Sci. 1996;41:660–669.CrossRefPubMed
57.
go back to reference Ciclitira PJ, Macartney JC, Evan G. Expression of c-myc in non-malignant and pre-malignant gastrointestinal disorders. J Pathol. 1987;151:293–296.CrossRefPubMed Ciclitira PJ, Macartney JC, Evan G. Expression of c-myc in non-malignant and pre-malignant gastrointestinal disorders. J Pathol. 1987;151:293–296.CrossRefPubMed
58.
go back to reference Macpherson AJ, Chester KA, Robson L, Bjarnason I, Malcolm AD, Peters TJ. Increased expression of c-myc proto-oncogene in biopsies of ulcerative colitis and Crohn’s colitis. Gut. 1992;33:651–656.PubMedCentralCrossRefPubMed Macpherson AJ, Chester KA, Robson L, Bjarnason I, Malcolm AD, Peters TJ. Increased expression of c-myc proto-oncogene in biopsies of ulcerative colitis and Crohn’s colitis. Gut. 1992;33:651–656.PubMedCentralCrossRefPubMed
59.
go back to reference Zisook S. Ulcerative-colitis—case responding to treatment with lithium carbonate. J Am Med Assoc. 1972;219:755.CrossRef Zisook S. Ulcerative-colitis—case responding to treatment with lithium carbonate. J Am Med Assoc. 1972;219:755.CrossRef
Metadata
Title
A Role for MYC in Lithium-Stimulated Repair of the Colonic Epithelium After DSS-Induced Damage in Mice
Authors
Wesley M. Raup-Konsavage
Timothy K. Cooper
Gregory S. Yochum
Publication date
01-02-2016
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 2/2016
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-015-3852-0

Other articles of this Issue 2/2016

Digestive Diseases and Sciences 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine