Skip to main content
Top
Published in: Sports Medicine 2/2015

01-02-2015 | Review Article

A Review on the Mechanisms of Blood-Flow Restriction Resistance Training-Induced Muscle Hypertrophy

Authors: Stephen John Pearson, Syed Robiul Hussain

Published in: Sports Medicine | Issue 2/2015

Login to get access

Abstract

It has traditionally been believed that resistance training can only induce muscle growth when the exercise intensity is greater than 65 % of the 1-repetition maximum (RM). However, more recently, the use of low-intensity resistance exercise with blood-flow restriction (BFR) has challenged this theory and consistently shown that hypertrophic adaptations can be induced with much lower exercise intensities (<50 % 1-RM). Despite the potent hypertrophic effects of BFR resistance training being demonstrated by numerous studies, the underlying mechanisms responsible for such effects are not well defined. Metabolic stress has been suggested to be a primary factor responsible, and this is theorised to activate numerous other mechanisms, all of which are thought to induce muscle growth via autocrine and/or paracrine actions. However, it is noteworthy that some of these mechanisms do not appear to be mediated to any great extent by metabolic stress but rather by mechanical tension (another primary factor of muscle hypertrophy). Given that the level of mechanical tension is typically low with BFR resistance exercise (<50 % 1-RM), one may question the magnitude of involvement of these mechanisms aligned to the adaptations reported with BFR resistance training. However, despite the low level of mechanical tension, it is plausible that the effects induced by the primary factors (mechanical tension and metabolic stress) are, in fact, additive, which ultimately contributes to the adaptations seen with BFR resistance training. Exercise-induced mechanical tension and metabolic stress are theorised to signal a number of mechanisms for the induction of muscle growth, including increased fast-twitch fibre recruitment, mechanotransduction, muscle damage, systemic and localised hormone production, cell swelling, and the production of reactive oxygen species and its variants, including nitric oxide and heat shock proteins. However, the relative extent to which these specific mechanisms are induced by the primary factors with BFR resistance exercise, as well as their magnitude of involvement in BFR resistance training-induced muscle hypertrophy, requires further exploration.
Literature
1.
go back to reference Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motorneurons. J Neurophysiol. 1965;28:560–80.PubMed Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motorneurons. J Neurophysiol. 1965;28:560–80.PubMed
2.
go back to reference MacDougall JD, Sale DG, Elder GC, et al. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Eur J Appl Physiol Occup Physiol. 1982;48(1):117–26.PubMed MacDougall JD, Sale DG, Elder GC, et al. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Eur J Appl Physiol Occup Physiol. 1982;48(1):117–26.PubMed
3.
go back to reference McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol. 1996;81(5):2004–12.PubMed McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol. 1996;81(5):2004–12.PubMed
4.
go back to reference Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 1990;69(4):1442–50.PubMed Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 1990;69(4):1442–50.PubMed
5.
go back to reference Kraemer WJ, Adams K, Cafarelli E, American College of Sports Medicine, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364–80.PubMed Kraemer WJ, Adams K, Cafarelli E, American College of Sports Medicine, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364–80.PubMed
6.
go back to reference Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):2097–106.PubMed Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):2097–106.PubMed
7.
go back to reference Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.PubMed Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.PubMed
8.
go back to reference Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585–92.PubMed Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585–92.PubMed
9.
go back to reference Takada S, Okita K, Suga T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol. 2012;113(2):199–205.PubMed Takada S, Okita K, Suga T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol. 2012;113(2):199–205.PubMed
10.
go back to reference Sumide T, Sakuraba K, Sawaki K, et al. Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport. 2009;12(1):107–12.PubMed Sumide T, Sakuraba K, Sawaki K, et al. Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport. 2009;12(1):107–12.PubMed
11.
go back to reference Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903–10.PubMed Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903–10.PubMed
12.
go back to reference Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength Cond J. 2009;31(3):77–84. Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength Cond J. 2009;31(3):77–84.
13.
go back to reference Pope ZK, Willardson JM, Schoenfeld BJ. A brief review: exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914–26.PubMed Pope ZK, Willardson JM, Schoenfeld BJ. A brief review: exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914–26.PubMed
14.
go back to reference Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol. 2006;100(5):1460–6.PubMed Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol. 2006;100(5):1460–6.PubMed
15.
go back to reference Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406.PubMed Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406.PubMed
16.
go back to reference Kaijser L, Sundberg CJ, Eiken O, et al. Muscle oxidative capacity and work performance after training under local leg ischemia. J Appl Physiol. 1990;69(2):785–7.PubMed Kaijser L, Sundberg CJ, Eiken O, et al. Muscle oxidative capacity and work performance after training under local leg ischemia. J Appl Physiol. 1990;69(2):785–7.PubMed
17.
go back to reference Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exerc Sports Sci Rev. 2009;37(2):78–85. Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exerc Sports Sci Rev. 2009;37(2):78–85.
18.
go back to reference Shinohara M, Kouzaki M, Yoshihisa T, et al. Efficacy of tourniquet ischemia for strength training with low resistance. Eur J Appl Physiol Occup Physiol. 1998;77(1–2):189–91.PubMed Shinohara M, Kouzaki M, Yoshihisa T, et al. Efficacy of tourniquet ischemia for strength training with low resistance. Eur J Appl Physiol Occup Physiol. 1998;77(1–2):189–91.PubMed
19.
go back to reference Takano H, Morita T, Iida H, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005;95(1):65–73.PubMed Takano H, Morita T, Iida H, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005;95(1):65–73.PubMed
20.
go back to reference Loenneke JP, Kearney ML, Thrower AD, et al. The acute response of practical occlusion in the knee extensors. J Strength Cond Res. 2010;24(10):2831–4.PubMed Loenneke JP, Kearney ML, Thrower AD, et al. The acute response of practical occlusion in the knee extensors. J Strength Cond Res. 2010;24(10):2831–4.PubMed
21.
go back to reference Loenneke JP, Fahs CA, Wilson JM, et al. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011;77(5):748–52.PubMed Loenneke JP, Fahs CA, Wilson JM, et al. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011;77(5):748–52.PubMed
22.
go back to reference Moritani T, Sherman WM, Shibata M, et al. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992;64(6):552–6.PubMed Moritani T, Sherman WM, Shibata M, et al. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992;64(6):552–6.PubMed
23.
go back to reference Yasuda T, Brechue WF, Fujita T, et al. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27(5):479–89.PubMed Yasuda T, Brechue WF, Fujita T, et al. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27(5):479–89.PubMed
24.
go back to reference Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):61–5.PubMed Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):61–5.PubMed
25.
go back to reference Reeves GV, Kraemer RR, Hollander DB, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006;101(6):1616–22.PubMed Reeves GV, Kraemer RR, Hollander DB, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006;101(6):1616–22.PubMed
26.
go back to reference Loenneke JP, Fahs CA, Rossow LM, et al. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012;78(1):151–4.PubMed Loenneke JP, Fahs CA, Rossow LM, et al. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012;78(1):151–4.PubMed
27.
go back to reference Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–50.PubMed Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–50.PubMed
28.
go back to reference Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.PubMed Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.PubMed
29.
go back to reference Goldfarb AH, Garten RS, Chee PD, et al. Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol. 2008;104(5):813–9.PubMed Goldfarb AH, Garten RS, Chee PD, et al. Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol. 2008;104(5):813–9.PubMed
30.
go back to reference Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2013;45(1):67–74.PubMed Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2013;45(1):67–74.PubMed
31.
go back to reference Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.PubMed Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.PubMed
32.
go back to reference Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.PubMed Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.PubMed
33.
go back to reference Kraemer WJ, Fleck SJ, Dziados JE, et al. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol. 1993;75(2):594–604.PubMed Kraemer WJ, Fleck SJ, Dziados JE, et al. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol. 1993;75(2):594–604.PubMed
34.
go back to reference Kraemer WJ, Gordon SE, Fleck SJ, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 1991;12(2):228–35.PubMed Kraemer WJ, Gordon SE, Fleck SJ, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 1991;12(2):228–35.PubMed
35.
go back to reference Kon M, Ikeda T, Homma T, et al. Effects of low-intensity resistance exercise under acute systemic hypoxia on hormonal responses. J Strength Cond Res. 2012;26(3):611–7.PubMed Kon M, Ikeda T, Homma T, et al. Effects of low-intensity resistance exercise under acute systemic hypoxia on hormonal responses. J Strength Cond Res. 2012;26(3):611–7.PubMed
36.
go back to reference Goldberg AL, Etlinger JD, Goldspink DF, et al. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185–98.PubMed Goldberg AL, Etlinger JD, Goldspink DF, et al. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185–98.PubMed
37.
go back to reference Spangenburg EE, Le Roith D, Ward CW, et al. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol. 2008;586(1):283–91.PubMedCentralPubMed Spangenburg EE, Le Roith D, Ward CW, et al. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol. 2008;586(1):283–91.PubMedCentralPubMed
38.
go back to reference Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979;203(4377):265–8.PubMed Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979;203(4377):265–8.PubMed
39.
go back to reference Goldspink G. Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology. 1998;15(1):35–43.PubMed Goldspink G. Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology. 1998;15(1):35–43.PubMed
40.
go back to reference Zou K, Meador BM, Johnson B, et al. The α7β1-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol. 2011;111(4):1134–41.PubMed Zou K, Meador BM, Johnson B, et al. The α7β1-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol. 2011;111(4):1134–41.PubMed
41.
go back to reference Adams GR. Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol. 2002;93(3):1159–67.PubMed Adams GR. Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol. 2002;93(3):1159–67.PubMed
42.
go back to reference Tatsumi R, Liu X, Pulido A, et al. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol. 2006;290(6):C1487–94.PubMed Tatsumi R, Liu X, Pulido A, et al. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol. 2006;290(6):C1487–94.PubMed
43.
go back to reference Uchiyama S, Tsukamoto H, Yoshimura S, et al. Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Arch. 2006;452(1):109–16.PubMed Uchiyama S, Tsukamoto H, Yoshimura S, et al. Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Arch. 2006;452(1):109–16.PubMed
44.
go back to reference Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9.PubMed Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9.PubMed
45.
go back to reference Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999;276(1 Pt 1):C120–7.PubMed Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999;276(1 Pt 1):C120–7.PubMed
46.
go back to reference Suga T, Okita K, Morita N, et al. Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2010;108(6):1563–7.PubMed Suga T, Okita K, Morita N, et al. Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2010;108(6):1563–7.PubMed
47.
go back to reference Goto K, Ishii N, Kizuka T, et al. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37(6):955–63.PubMed Goto K, Ishii N, Kizuka T, et al. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37(6):955–63.PubMed
48.
go back to reference Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33(3):114–9.PubMed Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33(3):114–9.PubMed
49.
go back to reference Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4292–314. Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4292–314.
50.
go back to reference Hornberger TA, Esser KA. Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc Nutr Soc. 2004;63(2):331–5.PubMed Hornberger TA, Esser KA. Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc Nutr Soc. 2004;63(2):331–5.PubMed
51.
go back to reference Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol. 2002;93(3):1168–80.PubMed Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol. 2002;93(3):1168–80.PubMed
52.
go back to reference Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32(5):833–9.PubMed Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32(5):833–9.PubMed
53.
go back to reference Quinn LS. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition. J Anim Sci. 2008;86(Suppl 14):E75–83.PubMed Quinn LS. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition. J Anim Sci. 2008;86(Suppl 14):E75–83.PubMed
54.
go back to reference Serrano AL, Baeza-Raja B, Perdiguero E, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33–44.PubMed Serrano AL, Baeza-Raja B, Perdiguero E, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33–44.PubMed
55.
go back to reference Sorichter S, Mair J, Koller A, et al. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol. 1997;83(4):1076–82.PubMed Sorichter S, Mair J, Koller A, et al. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol. 1997;83(4):1076–82.PubMed
56.
go back to reference Hather BM, Tesch PA, Buchanan P, et al. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand. 1991;143(2):177–85.PubMed Hather BM, Tesch PA, Buchanan P, et al. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand. 1991;143(2):177–85.PubMed
57.
go back to reference Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556–68.PubMed Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556–68.PubMed
58.
go back to reference McHugh MP, Connolly DA, Eston RG, et al. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999;27(3):157–70.PubMed McHugh MP, Connolly DA, Eston RG, et al. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999;27(3):157–70.PubMed
59.
go back to reference Thiebaud RS, Yasuda T, Loenneke JP, et al. Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv Med Appl Sci. 2013;5(2):53–9.PubMedCentralPubMed Thiebaud RS, Yasuda T, Loenneke JP, et al. Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv Med Appl Sci. 2013;5(2):53–9.PubMedCentralPubMed
60.
go back to reference Thiebaud RS, Loenneke JP, Fahs CA, et al. Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol Hung. 2014;101(2):150–7.PubMed Thiebaud RS, Loenneke JP, Fahs CA, et al. Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol Hung. 2014;101(2):150–7.PubMed
61.
go back to reference Umbel JD, Hoffman RL, Dearth DJ, et al. Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol. 2009;107(6):687–95.PubMed Umbel JD, Hoffman RL, Dearth DJ, et al. Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol. 2009;107(6):687–95.PubMed
62.
go back to reference Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199–209.PubMedCentralPubMed Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199–209.PubMedCentralPubMed
63.
go back to reference Patterson SD, Leggate M, Nimmo MA, et al. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713–9.PubMed Patterson SD, Leggate M, Nimmo MA, et al. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713–9.PubMed
64.
go back to reference Hellsten Y, Frandsen U, Orthenblad N, et al. Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol. 1997;498(Pt 1):239–48.PubMedCentralPubMed Hellsten Y, Frandsen U, Orthenblad N, et al. Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol. 1997;498(Pt 1):239–48.PubMedCentralPubMed
65.
go back to reference Manini TM, Yarrow JF, Buford TW, et al. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res. 2012;22(5):167–72.PubMedCentralPubMed Manini TM, Yarrow JF, Buford TW, et al. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res. 2012;22(5):167–72.PubMedCentralPubMed
66.
go back to reference McCall GE, Byrnes WC, Fleck SJ, et al. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24(1):96–107.PubMed McCall GE, Byrnes WC, Fleck SJ, et al. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24(1):96–107.PubMed
67.
go back to reference Ahtiainen JP, Pakarinen A, Alen M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.PubMed Ahtiainen JP, Pakarinen A, Alen M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.PubMed
68.
go back to reference West DW, Kujbida GW, Moore DR, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239–47.PubMedCentralPubMed West DW, Kujbida GW, Moore DR, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239–47.PubMedCentralPubMed
69.
go back to reference West DW, Phillips SM. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 2012;112(7):2693–702.PubMedCentralPubMed West DW, Phillips SM. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 2012;112(7):2693–702.PubMedCentralPubMed
70.
go back to reference Mitchell CJ, Churchward-Venne TA, Bellamy L, et al. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One. 2013;8(10):e78636.PubMedCentralPubMed Mitchell CJ, Churchward-Venne TA, Bellamy L, et al. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One. 2013;8(10):e78636.PubMedCentralPubMed
71.
go back to reference Owino V, Yang SY, Goldspink G. Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload. FEBS Lett. 2001;505(2):259–63.PubMed Owino V, Yang SY, Goldspink G. Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload. FEBS Lett. 2001;505(2):259–63.PubMed
72.
go back to reference Philippou A, Papageorgiou E, Bogdanis G, et al. Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF Epeptide actions in vitro. Vivo. 2009;23(4):567–75. Philippou A, Papageorgiou E, Bogdanis G, et al. Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF Epeptide actions in vitro. Vivo. 2009;23(4):567–75.
73.
go back to reference Hameed M, Lange KH, Andersen JL, et al. The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol. 2004;555(Pt 1):231–40.PubMedCentralPubMed Hameed M, Lange KH, Andersen JL, et al. The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol. 2004;555(Pt 1):231–40.PubMedCentralPubMed
74.
go back to reference Goldspink G, Wessner B, Bachl N. Growth factors, muscle function and doping. Curr Opin Pharmacol. 2008;8(3):352–7.PubMed Goldspink G, Wessner B, Bachl N. Growth factors, muscle function and doping. Curr Opin Pharmacol. 2008;8(3):352–7.PubMed
75.
go back to reference Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda). 2005;20:232–8. Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda). 2005;20:232–8.
76.
go back to reference Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008;23:160–70.PubMed Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008;23:160–70.PubMed
77.
go back to reference Barton ER. Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle. J Appl Physiol. 2006;100(6):1778–84.PubMed Barton ER. Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle. J Appl Physiol. 2006;100(6):1778–84.PubMed
78.
go back to reference Tidball JG. Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol. 2005;98(5):1900–8.PubMed Tidball JG. Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol. 2005;98(5):1900–8.PubMed
79.
go back to reference Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 2002;522(1–3):156–60.PubMed Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 2002;522(1–3):156–60.PubMed
80.
go back to reference Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat. 2003;203(1):89–99.PubMedCentralPubMed Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat. 2003;203(1):89–99.PubMedCentralPubMed
81.
go back to reference Lang F, Busch GL, Ritter M, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.PubMed Lang F, Busch GL, Ritter M, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.PubMed
82.
go back to reference Lang F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr. 2007;26(Suppl 5):613S–23S.PubMed Lang F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr. 2007;26(Suppl 5):613S–23S.PubMed
83.
go back to reference Low SY, Rennie MJ, Taylor PM. Signaling elements involved in amino acid transport responses to altered muscle cell volume. FASEB J. 1997;11(13):1111–7.PubMed Low SY, Rennie MJ, Taylor PM. Signaling elements involved in amino acid transport responses to altered muscle cell volume. FASEB J. 1997;11(13):1111–7.PubMed
84.
go back to reference Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J. 1996;10(4):502–9.PubMed Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J. 1996;10(4):502–9.PubMed
85.
go back to reference Lambert IH, Hoffmann EK, Pedersen SF. Cell volume regulation: physiology and pathophysiology. Acta Physiol (Oxf). 2008;194(4):255–82. Lambert IH, Hoffmann EK, Pedersen SF. Cell volume regulation: physiology and pathophysiology. Acta Physiol (Oxf). 2008;194(4):255–82.
86.
go back to reference Schliess F, Richter L, vom Dahl S, et al. Cell hydration and mTOR-dependent signalling. Acta Physiol (Oxf). 2006;187(1–2):223–9. Schliess F, Richter L, vom Dahl S, et al. Cell hydration and mTOR-dependent signalling. Acta Physiol (Oxf). 2006;187(1–2):223–9.
87.
go back to reference Finkenzeller G, Newsome W, Lang F, et al. Increase of c-jun mRNA upon hypo-osmotic cell swelling of rat hepatoma cells. FEBS Lett. 1994;340(3):163–6.PubMed Finkenzeller G, Newsome W, Lang F, et al. Increase of c-jun mRNA upon hypo-osmotic cell swelling of rat hepatoma cells. FEBS Lett. 1994;340(3):163–6.PubMed
88.
go back to reference Schliess F, Schreiber R, Häussinger D. Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochem J. 1995;309(Pt 1):13–7.PubMedCentralPubMed Schliess F, Schreiber R, Häussinger D. Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochem J. 1995;309(Pt 1):13–7.PubMedCentralPubMed
89.
go back to reference Dangott B, Schultz E, Mozdziak PE. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med. 2000;21(1):13–6.PubMed Dangott B, Schultz E, Mozdziak PE. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med. 2000;21(1):13–6.PubMed
90.
go back to reference Gundermann D, Fry C, Dickinson J, et al. Reactive hyperaemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol. 2012;112(9):1520–8.PubMedCentralPubMed Gundermann D, Fry C, Dickinson J, et al. Reactive hyperaemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol. 2012;112(9):1520–8.PubMedCentralPubMed
91.
go back to reference Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–81.PubMed Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–81.PubMed
92.
go back to reference Jackson MJ. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radic Biol Med. 2008;44(2):132–41.PubMed Jackson MJ. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radic Biol Med. 2008;44(2):132–41.PubMed
93.
go back to reference Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.PubMed Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.PubMed
94.
go back to reference Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann NY Acad Sci. 2006;1067:425–35.PubMed Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann NY Acad Sci. 2006;1067:425–35.PubMed
95.
go back to reference Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005–28.PubMed Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005–28.PubMed
96.
go back to reference Suzuki YJ, Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol. 1999;31(2):345–53.PubMed Suzuki YJ, Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol. 1999;31(2):345–53.PubMed
97.
go back to reference Wernbom M, Jarrebring R, Andreasson MA, et al. Acute effects of blood flow restriction on muscle fatiguing dynamic knee extensions at low load. J Strength Cond Res. 2009;23(8):2389–95.PubMed Wernbom M, Jarrebring R, Andreasson MA, et al. Acute effects of blood flow restriction on muscle fatiguing dynamic knee extensions at low load. J Strength Cond Res. 2009;23(8):2389–95.PubMed
98.
go back to reference Korthuis RJ, Granger DN, Townsley MI, et al. The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res. 1985;57(4):599–609.PubMed Korthuis RJ, Granger DN, Townsley MI, et al. The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res. 1985;57(4):599–609.PubMed
99.
go back to reference Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol. 2007;102(6):2379–88.PubMed Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol. 2007;102(6):2379–88.PubMed
100.
go back to reference Nakane M, Schmidt HH, Pollock JS, et al. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993;316(2):175–80.PubMed Nakane M, Schmidt HH, Pollock JS, et al. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993;316(2):175–80.PubMed
101.
go back to reference Kobzik L, Reid MB, Bredt DS, et al. Nitric oxide in skeletal muscle. Nature. 1994;372(6506):546–8.PubMed Kobzik L, Reid MB, Bredt DS, et al. Nitric oxide in skeletal muscle. Nature. 1994;372(6506):546–8.PubMed
102.
go back to reference Silvagno F, Xia H, Bredt DS. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem. 1996;271(19):11204–8.PubMed Silvagno F, Xia H, Bredt DS. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem. 1996;271(19):11204–8.PubMed
103.
go back to reference Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell. 2000;11(5):1859–974.PubMedCentralPubMed Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell. 2000;11(5):1859–974.PubMedCentralPubMed
104.
go back to reference Ito N, Ruegg UT, Kudo A, et al. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19(1):101–6.PubMed Ito N, Ruegg UT, Kudo A, et al. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19(1):101–6.PubMed
105.
go back to reference Tatsumi R, Hattori A, Ikeuchi Y, et al. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell. 2002;13(8):2909–18.PubMedCentralPubMed Tatsumi R, Hattori A, Ikeuchi Y, et al. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell. 2002;13(8):2909–18.PubMedCentralPubMed
106.
go back to reference Hunt JE, Walton LA, Ferguson RA. Brachial artery modifications to blood flow-restricted handgrip training and detraining. J Appl Physiol. 2012;112(6):956–61.PubMed Hunt JE, Walton LA, Ferguson RA. Brachial artery modifications to blood flow-restricted handgrip training and detraining. J Appl Physiol. 2012;112(6):956–61.PubMed
107.
go back to reference Hunt JE, Galea D, Tufft G, et al. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J Appl Physiol. 2013;115(3):403–11.PubMed Hunt JE, Galea D, Tufft G, et al. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J Appl Physiol. 2013;115(3):403–11.PubMed
108.
go back to reference Rudic RD, Shesely EG, Maeda N, et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101(4):731–6.PubMedCentralPubMed Rudic RD, Shesely EG, Maeda N, et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101(4):731–6.PubMedCentralPubMed
109.
go back to reference Casey DP, Joyner MJ. NOS inhibition blunts and delays the compensatory dilation in hypoperfused contracting human muscles. J Appl Physiol. 2009;107(6):1685–92.PubMedCentralPubMed Casey DP, Joyner MJ. NOS inhibition blunts and delays the compensatory dilation in hypoperfused contracting human muscles. J Appl Physiol. 2009;107(6):1685–92.PubMedCentralPubMed
110.
go back to reference Casey DP, Madery BD, Curry TB, et al. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. J Physiol. 2010;588(Pt 2):373–85.PubMedCentralPubMed Casey DP, Madery BD, Curry TB, et al. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. J Physiol. 2010;588(Pt 2):373–85.PubMedCentralPubMed
111.
go back to reference Bailey TG, Birk GK, Cable NT, et al. Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. Am J Physiol Heart Circ Physiol. 2012;303(5):H533–8.PubMed Bailey TG, Birk GK, Cable NT, et al. Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. Am J Physiol Heart Circ Physiol. 2012;303(5):H533–8.PubMed
112.
go back to reference He X, Zhao M, Bi XY, et al. Delayed preconditioning prevents ischemia/reperfusion-induced endothelial injury in rats: role of ROS and eNOS. Lab Invest. 2013;93(2):168–80.PubMed He X, Zhao M, Bi XY, et al. Delayed preconditioning prevents ischemia/reperfusion-induced endothelial injury in rats: role of ROS and eNOS. Lab Invest. 2013;93(2):168–80.PubMed
113.
go back to reference Kimura M, Ueda K, Goto C, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6):1403–10.PubMed Kimura M, Ueda K, Goto C, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6):1403–10.PubMed
114.
go back to reference Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80(2):183–201.PubMed Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80(2):183–201.PubMed
115.
go back to reference Simar D, Malatesta D, Badiou S, et al. Physical activity modulates heat shock protein-72 expression and limits oxidative damage accumulation in a healthy elderly population aged 60–90 years. J Gerontol A Biol Sci Med Sci. 2007;62(12):1413–9.PubMed Simar D, Malatesta D, Badiou S, et al. Physical activity modulates heat shock protein-72 expression and limits oxidative damage accumulation in a healthy elderly population aged 60–90 years. J Gerontol A Biol Sci Med Sci. 2007;62(12):1413–9.PubMed
116.
go back to reference Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92(5):2177–86.PubMed Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92(5):2177–86.PubMed
117.
go back to reference Meyer RA. Does blood flow restriction enhance hypertrophic signaling in skeletal muscle? J Appl Physiol. 2006;100(5):1443–4.PubMed Meyer RA. Does blood flow restriction enhance hypertrophic signaling in skeletal muscle? J Appl Physiol. 2006;100(5):1443–4.PubMed
118.
go back to reference Sundberg CJ. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand. 1994;615:1–50. Sundberg CJ. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand. 1994;615:1–50.
119.
go back to reference Yasuda T, Abe T, Brechue WF, et al. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism. 2010;59(10):1510–9.PubMed Yasuda T, Abe T, Brechue WF, et al. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism. 2010;59(10):1510–9.PubMed
120.
go back to reference Michel RN, Dunn SE, Chin ER. Cacineurin and skeletal muscle growth. Proc Nutr Soc. 2004;63(2):341–9.PubMed Michel RN, Dunn SE, Chin ER. Cacineurin and skeletal muscle growth. Proc Nutr Soc. 2004;63(2):341–9.PubMed
121.
go back to reference Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scan J Med Sci Sports. 2011;21(6):e231–41. Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scan J Med Sci Sports. 2011;21(6):e231–41.
122.
go back to reference Wernbom M, Apro W, Paulsen G, et al. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. 2013;113(12):2953–65.PubMed Wernbom M, Apro W, Paulsen G, et al. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. 2013;113(12):2953–65.PubMed
123.
go back to reference Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001;3(11):1009–13.PubMed Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001;3(11):1009–13.PubMed
124.
go back to reference O’Neil TK, Duffy LR, Frey JW, et al. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol. 2009;587(Pt 14):3691–701.PubMedCentralPubMed O’Neil TK, Duffy LR, Frey JW, et al. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol. 2009;587(Pt 14):3691–701.PubMedCentralPubMed
125.
go back to reference Reynolds TH, Bodine S, Lawrence JC. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem. 2002;277(20):17657–62.PubMed Reynolds TH, Bodine S, Lawrence JC. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem. 2002;277(20):17657–62.PubMed
126.
go back to reference Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology. 2006;21:362–9.PubMed Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology. 2006;21:362–9.PubMed
127.
go back to reference Lee SJ, McPherron AC. Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev. 1999;9(5):604–7.PubMed Lee SJ, McPherron AC. Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev. 1999;9(5):604–7.PubMed
128.
go back to reference Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 2001;98(16):9306–11.PubMedCentralPubMed Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 2001;98(16):9306–11.PubMedCentralPubMed
129.
go back to reference McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997;94(23):12457–61.PubMedCentralPubMed McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997;94(23):12457–61.PubMedCentralPubMed
130.
go back to reference McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest. 2002;109(5):595–601.PubMedCentralPubMed McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest. 2002;109(5):595–601.PubMedCentralPubMed
131.
go back to reference McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003;162(6):1135–47.PubMedCentralPubMed McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003;162(6):1135–47.PubMedCentralPubMed
132.
go back to reference Rebbapragada A, Benchabane H, Wrana JL, et al. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol. 2003;23(20):7230–42.PubMedCentralPubMed Rebbapragada A, Benchabane H, Wrana JL, et al. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol. 2003;23(20):7230–42.PubMedCentralPubMed
133.
go back to reference Lin J, Arnold HB, Della-Fera MA, et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun. 2002;291(3):701–6.PubMed Lin J, Arnold HB, Della-Fera MA, et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun. 2002;291(3):701–6.PubMed
134.
go back to reference Ríos R, Carneiro I, Arce VM, et al. Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun. 2001;280(2):561–6.PubMed Ríos R, Carneiro I, Arce VM, et al. Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun. 2001;280(2):561–6.PubMed
135.
go back to reference McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet. 1999;22(3):260–4.PubMed McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet. 1999;22(3):260–4.PubMed
136.
go back to reference Trendelenburg AU, Meyer A, Rohner D, et al. Myostatin reduces Akt/TORC1/p70S6 K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296(6):C1258–70.PubMed Trendelenburg AU, Meyer A, Rohner D, et al. Myostatin reduces Akt/TORC1/p70S6 K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296(6):C1258–70.PubMed
137.
go back to reference Drummond MJ, Fujita S, Abe T, et al. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc. 2008;40(4):691–8.PubMed Drummond MJ, Fujita S, Abe T, et al. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc. 2008;40(4):691–8.PubMed
138.
go back to reference Laurentino GC, Ugrinowitsch C, Roschel H, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–12.PubMed Laurentino GC, Ugrinowitsch C, Roschel H, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–12.PubMed
139.
go back to reference Sartori R, Milan G, Patron M, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol. 2009;296(6):C1248–57.PubMed Sartori R, Milan G, Patron M, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol. 2009;296(6):C1248–57.PubMed
140.
go back to reference Welle S, Burgess K, Mehta S. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomalprotein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab. 2009;296(3):E567–72.PubMedCentralPubMed Welle S, Burgess K, Mehta S. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomalprotein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab. 2009;296(3):E567–72.PubMedCentralPubMed
141.
go back to reference Raffaello A, Milan G, Masiero E, et al. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol. 2010;191(1):101–13.PubMedCentralPubMed Raffaello A, Milan G, Masiero E, et al. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol. 2010;191(1):101–13.PubMedCentralPubMed
142.
go back to reference Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.PubMedCentralPubMed Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.PubMedCentralPubMed
143.
go back to reference Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.PubMed Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.PubMed
144.
go back to reference Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68.PubMed Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68.PubMed
145.
go back to reference Ramaswamy S, Nakamura N, Sansal I, et al. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell. 2002;2(1):81–91.PubMed Ramaswamy S, Nakamura N, Sansal I, et al. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell. 2002;2(1):81–91.PubMed
146.
go back to reference Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6(6):458–71.PubMed Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6(6):458–71.PubMed
147.
go back to reference Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6(6):472–83.PubMed Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6(6):472–83.PubMed
148.
go back to reference Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335(25):1897–905.PubMed Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335(25):1897–905.PubMed
149.
go back to reference Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2013;49(1):59–68.PubMedCentralPubMed Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2013;49(1):59–68.PubMedCentralPubMed
150.
go back to reference Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.PubMed Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.PubMed
151.
go back to reference Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98(25):14440–5.PubMedCentralPubMed Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98(25):14440–5.PubMedCentralPubMed
152.
go back to reference Clarke BA, Drujan D, Willis MS, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007;6(5):376–85.PubMed Clarke BA, Drujan D, Willis MS, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007;6(5):376–85.PubMed
153.
go back to reference Cohen S, Brault JJ, Gygi SP, et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009;185(6):1083–95.PubMedCentralPubMed Cohen S, Brault JJ, Gygi SP, et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009;185(6):1083–95.PubMedCentralPubMed
154.
go back to reference Li HH, Willis MS, Lockyer P, et al. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest. 2007;117(11):3211–23.PubMedCentralPubMed Li HH, Willis MS, Lockyer P, et al. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest. 2007;117(11):3211–23.PubMedCentralPubMed
155.
go back to reference Herningtyas EH, Okimura Y, Handayaningsih AE, et al. Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochim Biophys Acta. 2008;1780(10):1115–20.PubMed Herningtyas EH, Okimura Y, Handayaningsih AE, et al. Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochim Biophys Acta. 2008;1780(10):1115–20.PubMed
156.
go back to reference Shimizu N, Yoshikawa N, Ito N, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011;13(2):170–82.PubMed Shimizu N, Yoshikawa N, Ito N, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011;13(2):170–82.PubMed
157.
go back to reference Waddell DS, Baehr LM, van den Brandt J, et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab. 2008;295(4):E785–97.PubMedCentralPubMed Waddell DS, Baehr LM, van den Brandt J, et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab. 2008;295(4):E785–97.PubMedCentralPubMed
158.
go back to reference Zhao W, Qin W, Pan J, et al. Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun. 2009;378(3):668–72.PubMed Zhao W, Qin W, Pan J, et al. Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun. 2009;378(3):668–72.PubMed
159.
go back to reference Gottlieb RA, Mentzer RM. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol. 2010;72:45–59.PubMedCentralPubMed Gottlieb RA, Mentzer RM. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol. 2010;72:45–59.PubMedCentralPubMed
160.
go back to reference Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009;461(7264):654–8.PubMed Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009;461(7264):654–8.PubMed
161.
go back to reference Romanello V, Guadagnin E, Gomes L, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010;29(10):1774–85.PubMedCentralPubMed Romanello V, Guadagnin E, Gomes L, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010;29(10):1774–85.PubMedCentralPubMed
162.
go back to reference Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010;16(8):906–14.PubMed Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010;16(8):906–14.PubMed
163.
go back to reference Schiaffino S, Bormioli SP, Aloisi M. Cell proliferation in rat skeletal muscle during early stages of compensatory hypertrophy. Virchows Arch B Cell Pathol. 1972;11(3):268–73.PubMed Schiaffino S, Bormioli SP, Aloisi M. Cell proliferation in rat skeletal muscle during early stages of compensatory hypertrophy. Virchows Arch B Cell Pathol. 1972;11(3):268–73.PubMed
164.
go back to reference Nielsen JL, Aagaard P, Bech RD, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(Pt 17):4351–61.PubMedCentralPubMed Nielsen JL, Aagaard P, Bech RD, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(Pt 17):4351–61.PubMedCentralPubMed
Metadata
Title
A Review on the Mechanisms of Blood-Flow Restriction Resistance Training-Induced Muscle Hypertrophy
Authors
Stephen John Pearson
Syed Robiul Hussain
Publication date
01-02-2015
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 2/2015
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-014-0264-9

Other articles of this Issue 2/2015

Sports Medicine 2/2015 Go to the issue

Acknowledgement to Referees

Referees 2014