Skip to main content
Top
Published in: Diagnostic Pathology 1/2008

Open Access 01-12-2008 | Proceedings

A relationship between slide quality and image quality in whole slide imaging (WSI)

Authors: Yukako Yagi, John R Gilbertson

Published in: Diagnostic Pathology | Special Issue 1/2008

Login to get access

Abstract

This study examined the effect of tissue section thickness and consistency – parameters outside the direct control of the imaging devices themselves – on WSI capture speed and image quality. Preliminary data indicates that thinner, more consistent tissue sectioning (such as those produced by automated tissue sectioning robots) result in significantly faster WSI capture times and better image quality.
A variety of tissue types (including human breast, mouse embryo, mouse brain, etc.) were sectioned using an (AS-200) Automated Tissue Sectioning System (Kurabo Industries, Osaka Japan) at thicknesses from 2 – 9 μm (at one μm intervals) and stained with H&E by a standard method. The resulting slides were imaged with 5 different WSI devices (ScanScope CS, Aperio, CA, iScan, BioImagene, CA, DX40, DMetrix, AZ, NanoZoomer, Hamamatsu Photonics K.K., Japan, Mirax Scan, Carl Zeiss Inc., Germany) with sampling periods of 0.43 – 0.69 μm/pixel. Slides with different tissue thicknesses were compared for image quality, appropriate number of focus points, and overall scanning speed.
Thinner sections (ie 3 μm sections versus 7 μm) required significantly fewer focus points and had significantly lower (10–15%) capture times. Improvement was seen with all devices and tissues tested. Furthermore, a panel of experienced pathologist judged image quality to be significantly better (for example, with better apparent resolution of nucleoli) with the thinner sections.
Automated tissue sectioning is a very new technology; however, the AS-200 seems to be able to produce thinner, more consistent, flatter sections than manual methods at reasonably high throughput. The resulting tissue sections seem to be easier for a WSI system's focusing systems to deal with (compared to manually cut slides). Teaming an automated tissue-sectioning device with a WSI device shows promise in producing faster WSI throughput with better image quality.
Literature
1.
go back to reference Gilbertson JR, Patel AA, Yagi Y: Clinical slide digitization – whole slide imaging in clinical practice [chapter]. Virtual microscopy and virtual slides in teaching, diagnosis and research. Edited by: Gu J, Ogilvie RW. 2005, Taylor & Francis, Boca Raton Gilbertson JR, Patel AA, Yagi Y: Clinical slide digitization – whole slide imaging in clinical practice [chapter]. Virtual microscopy and virtual slides in teaching, diagnosis and research. Edited by: Gu J, Ogilvie RW. 2005, Taylor & Francis, Boca Raton
2.
go back to reference Rojo MG, García GB, Mateos CP, García JG, Vicente MC: Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol. 2006, 14 (4): 285-305. 10.1177/1066896906292274.CrossRefPubMed Rojo MG, García GB, Mateos CP, García JG, Vicente MC: Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol. 2006, 14 (4): 285-305. 10.1177/1066896906292274.CrossRefPubMed
Metadata
Title
A relationship between slide quality and image quality in whole slide imaging (WSI)
Authors
Yukako Yagi
John R Gilbertson
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue Special Issue 1/2008
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-3-S1-S12

Other articles of this Special Issue 1/2008

Diagnostic Pathology 1/2008 Go to the issue