Skip to main content
Top
Published in: Nutrition Journal 1/2014

Open Access 01-12-2014 | Short report

A randomized crossover, pilot study examining the effects of a normal protein vs. high protein breakfast on food cravings and reward signals in overweight/obese “breakfast skipping”, late-adolescent girls

Authors: Heather A Hoertel, Matthew J Will, Heather J Leidy

Published in: Nutrition Journal | Issue 1/2014

Login to get access

Abstract

Background

This pilot study examined whether the addition of a normal protein (NP) vs. high protein (HP) breakfast leads to alterations in food cravings and plasma homovanillic acid (HVA), which is an index of central dopamine production, in overweight/obese ‘breakfast skipping’ late-adolescent young women.

Methods

A randomized crossover design was incorporated in which 20 girls (age 19 ± 1 y; BMI 28.6 ± 0.7 kg/m2) consumed 350 kcal NP (13 g protein) breakfast meals, 350 kcal HP (35 g protein) breakfast meals, or continued breakfast skipping (BS) for 6 consecutive days/pattern. On day 7 of each pattern, a 4 h testing day was completed including the consumption of breakfast (or no breakfast) followed by food craving questionnaires and blood sampling for HVA concentrations throughout the morning.

Results

Both breakfast meals reduced post-meal cravings for sweet and savory foods and increased HVA concentrations vs. BS (all, p < 0.05). Between breakfast meals, the HP breakfast tended to elicit greater reductions in post-meal savory cravings vs. NP (p = 0.08) and tended to elicit sustained increases in HVA concentrations prior to lunch vs. NP (p = 0.09). Lastly, HVA concentrations were positively correlated with the protein content at breakfast (r: 0.340; p < 0.03).

Conclusions

Collectively, these findings suggest that the addition of breakfast reduces post-meal food cravings and increases homovanillic acid concentrations in overweight/obese young people with higher protein versions eliciting greater responses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM: Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006, 295: 1549-1555.CrossRefPubMed Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM: Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006, 295: 1549-1555.CrossRefPubMed
2.
go back to reference Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, Scott BJ, St Jeor S, Willaims CL: Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005, 111: 1999-2012.CrossRefPubMed Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, Scott BJ, St Jeor S, Willaims CL: Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005, 111: 1999-2012.CrossRefPubMed
3.
go back to reference Nicklas TA, Baranowski T, Cullen KW, Berenson G: Eating patterns, dietary quality and obesity. J Am Coll Nutr. 2001, 20: 599-608.CrossRefPubMed Nicklas TA, Baranowski T, Cullen KW, Berenson G: Eating patterns, dietary quality and obesity. J Am Coll Nutr. 2001, 20: 599-608.CrossRefPubMed
4.
go back to reference Timlin MT, Pereira MA, Story M, Neumark-Sztainer D: Breakfast eating and weight change in a 5-year prospective analysis of adolescents: project EAT (Eating Among Teens). Pediatrics. 2008, 121: e638-e645.CrossRefPubMed Timlin MT, Pereira MA, Story M, Neumark-Sztainer D: Breakfast eating and weight change in a 5-year prospective analysis of adolescents: project EAT (Eating Among Teens). Pediatrics. 2008, 121: e638-e645.CrossRefPubMed
5.
go back to reference Rampersaud GC, Pereira MA, Girard BL, Adams J, Metzl JD: Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. J Am Diet Assoc. 2005, 105: 743-760. quiz 61–2CrossRefPubMed Rampersaud GC, Pereira MA, Girard BL, Adams J, Metzl JD: Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. J Am Diet Assoc. 2005, 105: 743-760. quiz 61–2CrossRefPubMed
6.
go back to reference Deshmukh-Taskar PR, Nicklas TA, O’Neil CE, Keast DR, Radcliffe JD, Cho S: The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999–2006. J Am Diet Assoc. 2010, 110: 869-878.CrossRefPubMed Deshmukh-Taskar PR, Nicklas TA, O’Neil CE, Keast DR, Radcliffe JD, Cho S: The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999–2006. J Am Diet Assoc. 2010, 110: 869-878.CrossRefPubMed
7.
go back to reference Brown AW, Bohan Brown MM, Allison DB: Belief beyond the evidence: using the proposed effect of breakfast on obesity to show 2 practices that distort scientific evidence. Am J Clin Nutr. 2013, 98: 1298-1308.CrossRefPubMedPubMedCentral Brown AW, Bohan Brown MM, Allison DB: Belief beyond the evidence: using the proposed effect of breakfast on obesity to show 2 practices that distort scientific evidence. Am J Clin Nutr. 2013, 98: 1298-1308.CrossRefPubMedPubMedCentral
8.
go back to reference Casazza K, Brown A, Astrup A, Bertz F, Baum C, Bohan Brown M, Dawson J, Durant N, Dutton G, Fields DA, Fontaine KR, Levitsky D, Mehta T, Menachemi N, Newby P, Pate R, Raynor H, Rolls BJ, Sen B, Smith DJ, Thomas D, Wansink B, Allison DB, Heymsfield S: Weighing the evidence of common beliefs in obesity research. Crit Rev Food Sci Nutr. 2014, 20: 0- Casazza K, Brown A, Astrup A, Bertz F, Baum C, Bohan Brown M, Dawson J, Durant N, Dutton G, Fields DA, Fontaine KR, Levitsky D, Mehta T, Menachemi N, Newby P, Pate R, Raynor H, Rolls BJ, Sen B, Smith DJ, Thomas D, Wansink B, Allison DB, Heymsfield S: Weighing the evidence of common beliefs in obesity research. Crit Rev Food Sci Nutr. 2014, 20: 0-
9.
go back to reference Leidy HJ, Racki EM: The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int J Obes (Lond). 2010, 34: 1125-1133.CrossRef Leidy HJ, Racki EM: The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int J Obes (Lond). 2010, 34: 1125-1133.CrossRef
10.
go back to reference Leidy HJ, Ortinau LC, Douglas SM, Hoertel HA: Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, “breakfast-skipping,” late-adolescent girls. Am J Clin Nutr. 2013, 97: 677-688.CrossRefPubMedPubMedCentral Leidy HJ, Ortinau LC, Douglas SM, Hoertel HA: Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, “breakfast-skipping,” late-adolescent girls. Am J Clin Nutr. 2013, 97: 677-688.CrossRefPubMedPubMedCentral
11.
go back to reference Drewnowski A: Obesity and the food environment: dietary energy density and diet costs. Am J Prev Med. 2004, 27: 154-162.CrossRefPubMed Drewnowski A: Obesity and the food environment: dietary energy density and diet costs. Am J Prev Med. 2004, 27: 154-162.CrossRefPubMed
12.
go back to reference Erlanson-Albertsson C: How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol. 2005, 97: 61-73.CrossRefPubMed Erlanson-Albertsson C: How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol. 2005, 97: 61-73.CrossRefPubMed
13.
go back to reference Baldo BA, Sadeghian K, Basso AM, Kelley AE: Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res. 2002, 137: 165-177.CrossRefPubMed Baldo BA, Sadeghian K, Basso AM, Kelley AE: Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res. 2002, 137: 165-177.CrossRefPubMed
14.
go back to reference Smith GP: Accumbens dopamine mediates the rewarding effect of orosensory stimulation by sucrose. Appetite. 2004, 43: 11-13.CrossRefPubMed Smith GP: Accumbens dopamine mediates the rewarding effect of orosensory stimulation by sucrose. Appetite. 2004, 43: 11-13.CrossRefPubMed
15.
go back to reference Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS: Brain dopamine and obesity. Lancet. 2001, 357: 354-357.CrossRefPubMed Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS: Brain dopamine and obesity. Lancet. 2001, 357: 354-357.CrossRefPubMed
16.
go back to reference American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, and North American Association for the Study of Obesity: Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care. 2004, 27: 596-601.CrossRef American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, and North American Association for the Study of Obesity: Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care. 2004, 27: 596-601.CrossRef
17.
go back to reference Volkow ND, Wise RA: How can drug addiction help us understand obesity?. Nat Neurosci. 2005, 8: 555-560.CrossRefPubMed Volkow ND, Wise RA: How can drug addiction help us understand obesity?. Nat Neurosci. 2005, 8: 555-560.CrossRefPubMed
18.
go back to reference Reinholz J, Skopp O, Breitenstein C, Bohr I, Winterhoff H, Knecht S: Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations. Nutr Metab (Lond). 2008, 5: 35-CrossRef Reinholz J, Skopp O, Breitenstein C, Bohr I, Winterhoff H, Knecht S: Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations. Nutr Metab (Lond). 2008, 5: 35-CrossRef
19.
go back to reference Peuhkuri K, Sihvola N, Korpela R: Dietary proteins and food-related reward signals. Food Nutr Res. 2011, 55: 5955-CrossRef Peuhkuri K, Sihvola N, Korpela R: Dietary proteins and food-related reward signals. Food Nutr Res. 2011, 55: 5955-CrossRef
20.
go back to reference Bassareo V, Di Chiara G: Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci. 1997, 17: 851-861.PubMed Bassareo V, Di Chiara G: Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci. 1997, 17: 851-861.PubMed
21.
go back to reference Small DM, Jones-Gotman M, Dagher A: Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage. 2003, 19: 1709-1715.CrossRefPubMed Small DM, Jones-Gotman M, Dagher A: Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage. 2003, 19: 1709-1715.CrossRefPubMed
22.
go back to reference Levine AS, Kotz CM, Gosnell BA: Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr. 2003, 78: 834S-842S.PubMed Levine AS, Kotz CM, Gosnell BA: Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr. 2003, 78: 834S-842S.PubMed
23.
go back to reference Olszewski PK, Alsio J, Schioth HB, Levine AS: Opioids as facilitators of feeding: can any food be rewarding?. Physiol Behav. 2011, 104: 105-110.CrossRefPubMed Olszewski PK, Alsio J, Schioth HB, Levine AS: Opioids as facilitators of feeding: can any food be rewarding?. Physiol Behav. 2011, 104: 105-110.CrossRefPubMed
24.
go back to reference Leidy HJ: Increased dietary protein as a dietary strategy to prevent and/or treat obesity. Mol Med. 2014, 111: 54-58. Leidy HJ: Increased dietary protein as a dietary strategy to prevent and/or treat obesity. Mol Med. 2014, 111: 54-58.
26.
go back to reference Pickar D, Breier A, Kelsoe J: Plasma homovanillic acid as an index of central dopaminergic activity: studies in schizophrenic patients. Ann N Y Acad Sci. 1988, 537: 339-346.CrossRefPubMed Pickar D, Breier A, Kelsoe J: Plasma homovanillic acid as an index of central dopaminergic activity: studies in schizophrenic patients. Ann N Y Acad Sci. 1988, 537: 339-346.CrossRefPubMed
27.
go back to reference Amin F, Davidson M, Davis KL: Homovanillic acid measurement in clinical research: a review of methodology. Schizophr Bull. 1992, 18: 123-148.CrossRefPubMed Amin F, Davidson M, Davis KL: Homovanillic acid measurement in clinical research: a review of methodology. Schizophr Bull. 1992, 18: 123-148.CrossRefPubMed
28.
go back to reference Pickar D, Breier A, Hsiao JK, Doran AR, Wolkowitz OM, Pato CN, Konicki PE, Potter WZ: Cerebrospinal fluid and plasma monoamine metabolites and their relation to psychosis. Implications for regional brain dysfunction in schizophrenia. Arch Gen Psychiatry. 1990, 47: 641-648.CrossRefPubMed Pickar D, Breier A, Hsiao JK, Doran AR, Wolkowitz OM, Pato CN, Konicki PE, Potter WZ: Cerebrospinal fluid and plasma monoamine metabolites and their relation to psychosis. Implications for regional brain dysfunction in schizophrenia. Arch Gen Psychiatry. 1990, 47: 641-648.CrossRefPubMed
29.
go back to reference Bacopoulos NG, Hattox SE, Roth RH: 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indicators of central dopaminergic activity. Eur J Pharmacol. 1979, 56: 225-236.CrossRefPubMed Bacopoulos NG, Hattox SE, Roth RH: 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indicators of central dopaminergic activity. Eur J Pharmacol. 1979, 56: 225-236.CrossRefPubMed
30.
go back to reference Kendler KS, Heninger GR, Roth RH: Brain contribution to the haloperidol-induced increase in plasma homovanillic acid. Eur J Pharmacol. 1981, 71: 321-326.CrossRefPubMed Kendler KS, Heninger GR, Roth RH: Brain contribution to the haloperidol-induced increase in plasma homovanillic acid. Eur J Pharmacol. 1981, 71: 321-326.CrossRefPubMed
31.
go back to reference Sternberg DE, Heninger GR, Roth RH: Plasma homovanillic acid as an index of brain dopamine metabolism: enhancement with debrisoquin. Life Sci. 1983, 32: 2447-2452.CrossRefPubMed Sternberg DE, Heninger GR, Roth RH: Plasma homovanillic acid as an index of brain dopamine metabolism: enhancement with debrisoquin. Life Sci. 1983, 32: 2447-2452.CrossRefPubMed
32.
go back to reference Trumbo P, Schlicker S, Yates AA, Poos M: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002, 102: 1621-1630.CrossRefPubMed Trumbo P, Schlicker S, Yates AA, Poos M: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002, 102: 1621-1630.CrossRefPubMed
33.
go back to reference Flint A, Raben A, Blundell JE, Astrup A: Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000, 24: 38-48.CrossRefPubMed Flint A, Raben A, Blundell JE, Astrup A: Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000, 24: 38-48.CrossRefPubMed
34.
go back to reference Belza A, Ritz C, Sorensen MQ, Holst JJ, Rehfeld JF, Astrup A: Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am J Clin Nutr. 2013, 97: 980-989.CrossRefPubMed Belza A, Ritz C, Sorensen MQ, Holst JJ, Rehfeld JF, Astrup A: Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am J Clin Nutr. 2013, 97: 980-989.CrossRefPubMed
35.
go back to reference Drewnowski A, Almiron-Roig E: Human Perceptions and Preferences for Fat-Rich Foods. 2010 Drewnowski A, Almiron-Roig E: Human Perceptions and Preferences for Fat-Rich Foods. 2010
36.
go back to reference Drewnowski A, Kurth C, Holden-Wiltse J, Saari J: Food preferences in human obesity: carbohydrates versus fats. Appetite. 1992, 18: 207-221.CrossRefPubMed Drewnowski A, Kurth C, Holden-Wiltse J, Saari J: Food preferences in human obesity: carbohydrates versus fats. Appetite. 1992, 18: 207-221.CrossRefPubMed
38.
go back to reference Fernstrom JD, Fernstrom MH: Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007, 137: 1539S-1547S. discussion 48SPubMed Fernstrom JD, Fernstrom MH: Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007, 137: 1539S-1547S. discussion 48SPubMed
39.
go back to reference Amin F, Davidson M, Kahn RS, Schmeidler J, Stern R, Knott PJ, Apter S: Assessment of the central dopaminergic index of plasma HVA in schizophrenia. Schizophr Bull. 1995, 21: 53-66.CrossRefPubMed Amin F, Davidson M, Kahn RS, Schmeidler J, Stern R, Knott PJ, Apter S: Assessment of the central dopaminergic index of plasma HVA in schizophrenia. Schizophr Bull. 1995, 21: 53-66.CrossRefPubMed
40.
go back to reference Fernstrom MH, Fernstrom JD: Effect of chronic protein ingestion on rat central nervous system tyrosine levels and in vivo tyrosine hydroxylation rate. Brain Res. 1995, 672: 97-103.CrossRefPubMed Fernstrom MH, Fernstrom JD: Effect of chronic protein ingestion on rat central nervous system tyrosine levels and in vivo tyrosine hydroxylation rate. Brain Res. 1995, 672: 97-103.CrossRefPubMed
41.
go back to reference Leidy HJ, Lepping RJ, Savage CR, Harris CT: Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast-skipping teens: a pilot fMRI study. Obesity (Silver Spring). 2011, 19: 2019-2025.CrossRef Leidy HJ, Lepping RJ, Savage CR, Harris CT: Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast-skipping teens: a pilot fMRI study. Obesity (Silver Spring). 2011, 19: 2019-2025.CrossRef
42.
go back to reference Aris-Carrion O, Stamelou M, Murillo-Rodriguez E, Menendez-Gonzale M, Poppel E: Dopaminergic reward system: a short integrative review. Int Arch Med. 2010, 3 (24): 1- Aris-Carrion O, Stamelou M, Murillo-Rodriguez E, Menendez-Gonzale M, Poppel E: Dopaminergic reward system: a short integrative review. Int Arch Med. 2010, 3 (24): 1-
43.
go back to reference Zhou QY, Palmiter RD: Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995, 83: 1197-1209.CrossRefPubMed Zhou QY, Palmiter RD: Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995, 83: 1197-1209.CrossRefPubMed
44.
go back to reference Meye FJ, Adan RAH: Feelings about food: the ventral tegmental area in food reward and emotional eating. Cell [review]. 2014, 35: 31-40. Meye FJ, Adan RAH: Feelings about food: the ventral tegmental area in food reward and emotional eating. Cell [review]. 2014, 35: 31-40.
45.
46.
go back to reference Towell A, Muscat R, Willner P: Behavioural microanalysis of the role of dopamine in amphetamine anorexia. Pharmacol Biochem Behav. 1988, 30: 641-648.CrossRefPubMed Towell A, Muscat R, Willner P: Behavioural microanalysis of the role of dopamine in amphetamine anorexia. Pharmacol Biochem Behav. 1988, 30: 641-648.CrossRefPubMed
47.
go back to reference Cincotta AH, Meier AH: Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care. 1996, 19: 667-670.CrossRefPubMed Cincotta AH, Meier AH: Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care. 1996, 19: 667-670.CrossRefPubMed
48.
go back to reference Goldfield GS, Lorello C, Doucet E: Methylphenidate reduces energy intake and dietary fat intake in adults: a mechanism of reduced reinforcing value of food?. Am J Clin Nutr. 2007, 86: 308-315.PubMed Goldfield GS, Lorello C, Doucet E: Methylphenidate reduces energy intake and dietary fat intake in adults: a mechanism of reduced reinforcing value of food?. Am J Clin Nutr. 2007, 86: 308-315.PubMed
Metadata
Title
A randomized crossover, pilot study examining the effects of a normal protein vs. high protein breakfast on food cravings and reward signals in overweight/obese “breakfast skipping”, late-adolescent girls
Authors
Heather A Hoertel
Matthew J Will
Heather J Leidy
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Nutrition Journal / Issue 1/2014
Electronic ISSN: 1475-2891
DOI
https://doi.org/10.1186/1475-2891-13-80

Other articles of this Issue 1/2014

Nutrition Journal 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine