Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2007

01-03-2007 | Review Paper

A primer on motion visual evoked potentials

Author: Sven P. Heinrich

Published in: Documenta Ophthalmologica | Issue 2/2007

Login to get access

Abstract

Motion visual evoked potentials (motion VEPs) have been used since the late 1960s to investigate the properties of human visual motion processing, and continue to be a popular tool with a possible future in clinical diagnosis. This review first provides a synopsis of the characteristics of motion VEPs and then summarizes important methodological aspects. A subsequent overview illustrates how motion VEPs have been applied to study basic functions of human motion processing and shows perspectives for their use as a diagnostic tool.
Footnotes
1
Strictly speaking, the frequency of a motion-reversal stimulus is equal to half the reversal rate since one stimulus period encompasses both parts of the ‘back and forth’ movement.
 
Literature
1.
go back to reference Snowden RJ, Freeman TCA (2004) The visual perception of motion. Curr Biol 14:R828–R831PubMed Snowden RJ, Freeman TCA (2004) The visual perception of motion. Curr Biol 14:R828–R831PubMed
2.
go back to reference Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468PubMed Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468PubMed
3.
go back to reference Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402 Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402
4.
go back to reference Anderson SJ, Holliday IE, Singh KD, Harding GFA (1996) Localization and functional analysis of human cortical area V5 using magneto-encephalography. Proc R Soc Lond B Biol Sci 263:423–431 Anderson SJ, Holliday IE, Singh KD, Harding GFA (1996) Localization and functional analysis of human cortical area V5 using magneto-encephalography. Proc R Soc Lond B Biol Sci 263:423–431
5.
go back to reference Clifford CWG, Ibbotson MR (2003) Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 68:409–437 Clifford CWG, Ibbotson MR (2003) Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 68:409–437
6.
go back to reference Purkinje J (1820) Beyträge zur näheren Kenntniss des Schwindels aus heautognostischen Daten. Medicinische Jahrbücher des kaiserlich-königlichen österreichischen Staates 6:79–125 Purkinje J (1820) Beyträge zur näheren Kenntniss des Schwindels aus heautognostischen Daten. Medicinische Jahrbücher des kaiserlich-königlichen österreichischen Staates 6:79–125
7.
go back to reference Addams R (1834) An account of a peculiar optical phænomenon seen after having looked at a moving body. Lond Edinb Phil Mag J Sci 5:373–374 Addams R (1834) An account of a peculiar optical phænomenon seen after having looked at a moving body. Lond Edinb Phil Mag J Sci 5:373–374
8.
go back to reference Gastaut H, Régis H (1951) Un signeélectroéncephalographique peu connu: les pointes occipitales survenant pendant l’ouverture des yeux. Rev Neurol (Paris) 84:640–643 Gastaut H, Régis H (1951) Un signeélectroéncephalographique peu connu: les pointes occipitales survenant pendant l’ouverture des yeux. Rev Neurol (Paris) 84:640–643
9.
go back to reference Evans CC (1953) Spontaneous excitation of the visual cortex and association areas—lambda waves. Electroenceph Clin Neurophysiol 5:69–74PubMed Evans CC (1953) Spontaneous excitation of the visual cortex and association areas—lambda waves. Electroenceph Clin Neurophysiol 5:69–74PubMed
10.
go back to reference Barlow JS, Cigánek L (1969) Lambda responses in relation to visual evoked responses in man. Electroenceph Clin Neurophysiol 26:183–192PubMed Barlow JS, Cigánek L (1969) Lambda responses in relation to visual evoked responses in man. Electroenceph Clin Neurophysiol 26:183–192PubMed
11.
go back to reference Billings RJ (1989) The origin of the occipital lambda wave in man. Electroenceph Clin Neurophysiol 72:95–113PubMed Billings RJ (1989) The origin of the occipital lambda wave in man. Electroenceph Clin Neurophysiol 72:95–113PubMed
12.
go back to reference Marshall C, Harden C (1952) Use of rythmically varying patterns for photic stimulation. Electroenceph Clin Neurophysiol 4:283–287PubMed Marshall C, Harden C (1952) Use of rythmically varying patterns for photic stimulation. Electroenceph Clin Neurophysiol 4:283–287PubMed
13.
go back to reference MacKay DM, Rietveld WJ (1968) Electroencephalogram potentials evoked by accelerated visual motion. Nature 217:677–678PubMed MacKay DM, Rietveld WJ (1968) Electroencephalogram potentials evoked by accelerated visual motion. Nature 217:677–678PubMed
14.
go back to reference Kubová Z, Kuba M, Hubacek J, Vit F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72PubMed Kubová Z, Kuba M, Hubacek J, Vit F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72PubMed
15.
go back to reference Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMed Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMed
16.
go back to reference Kuba M (2006) Motion-onset visual evoked potentials and their diagnostic applications. Nucleus HK, Hradec Králové Kuba M (2006) Motion-onset visual evoked potentials and their diagnostic applications. Nucleus HK, Hradec Králové
17.
go back to reference Heinrich SP, Renkl AEH, Bach M (2005) Pattern specificity of human visual motion processing. Vision Res 45:2137–2143PubMed Heinrich SP, Renkl AEH, Bach M (2005) Pattern specificity of human visual motion processing. Vision Res 45:2137–2143PubMed
18.
go back to reference Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential visually evoked by motion. Acta Neurobiol Exp (Warsz) 48:239–249 Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential visually evoked by motion. Acta Neurobiol Exp (Warsz) 48:239–249
19.
go back to reference Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMed Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMed
20.
go back to reference Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849PubMed Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849PubMed
21.
go back to reference Göpfert E, Müller R, Breuer D, Greenlee MW (1999) Similarities and dissimilarities between pattern VEPs and motion VEPs. Doc Ophthalmol 97:67–79 Göpfert E, Müller R, Breuer D, Greenlee MW (1999) Similarities and dissimilarities between pattern VEPs and motion VEPs. Doc Ophthalmol 97:67–79
22.
go back to reference McKeefry DJ (2001) Visual evoked potentials elicited by chromatic motion onset. Vision Res 41:2005–2025PubMed McKeefry DJ (2001) Visual evoked potentials elicited by chromatic motion onset. Vision Res 41:2005–2025PubMed
23.
go back to reference Probst T, Plendl H, Paulus W, Wist ER, Scherg M (1993) Identification of the visual motion area (area V5) in the human brain by dipole source analysis. Exp Brain Res 93:345–351PubMed Probst T, Plendl H, Paulus W, Wist ER, Scherg M (1993) Identification of the visual motion area (area V5) in the human brain by dipole source analysis. Exp Brain Res 93:345–351PubMed
24.
go back to reference Nakamura H, Kashii S, Nagamine T, Matsui Y, Hashimoto T, Honda Y, Shibasaki H (2003) Human V5 demonstrated by magnetoencephalography using random dot kinematograms of different coherence levels. Neurosci Res 46:423–433PubMed Nakamura H, Kashii S, Nagamine T, Matsui Y, Hashimoto T, Honda Y, Shibasaki H (2003) Human V5 demonstrated by magnetoencephalography using random dot kinematograms of different coherence levels. Neurosci Res 46:423–433PubMed
25.
go back to reference Amano K, Kuriki I, Takeda T (2005) Direction-specific adaptation of magnetic responses to motion onset. Vision Res 45:2533–2548PubMed Amano K, Kuriki I, Takeda T (2005) Direction-specific adaptation of magnetic responses to motion onset. Vision Res 45:2533–2548PubMed
26.
go back to reference Kaneoke Y, Watanabe S, Kakigi R (2005) Human visual processing as revealed by magnetoencephalography. Int Rev Neurobiol 68:197–222PubMed Kaneoke Y, Watanabe S, Kakigi R (2005) Human visual processing as revealed by magnetoencephalography. Int Rev Neurobiol 68:197–222PubMed
27.
go back to reference Bundo M, Kaneoke Y, Inao S, Yoshida J, Nakamura A, Kakigi R (2000) Human visual motion areas determined individually by magnetoencephalography and 3D magnetic resonance imaging. Hum Brain Mapp 11:34–45 Bundo M, Kaneoke Y, Inao S, Yoshida J, Nakamura A, Kakigi R (2000) Human visual motion areas determined individually by magnetoencephalography and 3D magnetic resonance imaging. Hum Brain Mapp 11:34–45
28.
go back to reference Schellart NAM, Trindade MJG, Reits D, Verbunt JPA, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134PubMed Schellart NAM, Trindade MJG, Reits D, Verbunt JPA, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134PubMed
29.
go back to reference Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:86–96PubMed Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:86–96PubMed
30.
go back to reference Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830PubMed Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830PubMed
31.
go back to reference Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768PubMed Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768PubMed
32.
go back to reference Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424PubMed Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424PubMed
33.
go back to reference Shulman GL, Schwarz J, Miezin FM, Petersen SE (1998) Effect of motion contrast on human cortical responses to moving stimuli. J Neurophysiol 79:2794–2803PubMed Shulman GL, Schwarz J, Miezin FM, Petersen SE (1998) Effect of motion contrast on human cortical responses to moving stimuli. J Neurophysiol 79:2794–2803PubMed
34.
go back to reference Born TR, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189PubMed Born TR, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189PubMed
35.
go back to reference Göpfert E, Müller R, Hartwig M (1984) Effects of movement adapation on movement visual evoked potentials. Doc Ophthal Proc Ser 40:321–324 Göpfert E, Müller R, Hartwig M (1984) Effects of movement adapation on movement visual evoked potentials. Doc Ophthal Proc Ser 40:321–324
36.
go back to reference Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 14:47–51PubMed Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 14:47–51PubMed
37.
go back to reference Müller R, Göpfert E, Hartwig M (1986) The effect of movement adaptation on human cortical potentials evoked by pattern movement. Acta Neurobiol Exp (Warsz) 46:293–301 Müller R, Göpfert E, Hartwig M (1986) The effect of movement adaptation on human cortical potentials evoked by pattern movement. Acta Neurobiol Exp (Warsz) 46:293–301
38.
go back to reference Schlykowa L, van Dijk BW, Ehrenstein WH (1993) Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. Cogn Brain Res 1:169–174 Schlykowa L, van Dijk BW, Ehrenstein WH (1993) Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. Cogn Brain Res 1:169–174
39.
go back to reference Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547PubMed Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547PubMed
40.
go back to reference Wist ER, Gross JD, Niedeggen M (1994) Motion aftereffects with random-dot chequerboard kinematograms: relation between psychophysical and VEP measures. Perception 23:1155–1162PubMed Wist ER, Gross JD, Niedeggen M (1994) Motion aftereffects with random-dot chequerboard kinematograms: relation between psychophysical and VEP measures. Perception 23:1155–1162PubMed
41.
go back to reference Hoffmann MB, Unsöld A, Bach M (2001) Directional tuning of motion adaptation in the motion-onset VEP. Vision Res 41:2187–2194PubMed Hoffmann MB, Unsöld A, Bach M (2001) Directional tuning of motion adaptation in the motion-onset VEP. Vision Res 41:2187–2194PubMed
42.
go back to reference Heinrich SP, Bach M (2003) Adaptation characteristics of steady-state motion visual evoked potentials. Clin Neurophysiol 114:1359–1366PubMed Heinrich SP, Bach M (2003) Adaptation characteristics of steady-state motion visual evoked potentials. Clin Neurophysiol 114:1359–1366PubMed
43.
go back to reference Müller R, Göpfert E, Leinweber M, Greenlee MW (2004) Effect of adaptation direction on the motion VEP and perceived speed of drifting gratings. Vision Res 44:2381–2392PubMed Müller R, Göpfert E, Leinweber M, Greenlee MW (2004) Effect of adaptation direction on the motion VEP and perceived speed of drifting gratings. Vision Res 44:2381–2392PubMed
44.
go back to reference Maurer JP, Heinrich TS, Bach M (2004) Direction tuning of human motion detection determined from a population model. Eur J Neurosci 19:3359–3364PubMed Maurer JP, Heinrich TS, Bach M (2004) Direction tuning of human motion detection determined from a population model. Eur J Neurosci 19:3359–3364PubMed
45.
go back to reference Heinrich SP, van der Smagt MJ, Bach M, Hoffmann MB (2004) Electrophysiological evidence for independent speed channels in human motion processing. J Vision 4:469–475 Heinrich SP, van der Smagt MJ, Bach M, Hoffmann MB (2004) Electrophysiological evidence for independent speed channels in human motion processing. J Vision 4:469–475
46.
go back to reference Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms. Exp Brain Res 151:536–541PubMed Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms. Exp Brain Res 151:536–541PubMed
47.
go back to reference Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91PubMed Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91PubMed
48.
go back to reference Göpfert E, Schlykowa L, Müller R (1988) Zur Topographie des Bewegungs-VEP am Menschen. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 19:14–20PubMed Göpfert E, Schlykowa L, Müller R (1988) Zur Topographie des Bewegungs-VEP am Menschen. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 19:14–20PubMed
49.
go back to reference Hollants-Gilhuijs MAM, de Munck JC, Kubová Z, van Royen E, Spekreijse H (2000) The development of hemispheric asymmetry in human motion VEPs. Vision Res 40:1–11PubMed Hollants-Gilhuijs MAM, de Munck JC, Kubová Z, van Royen E, Spekreijse H (2000) The development of hemispheric asymmetry in human motion VEPs. Vision Res 40:1–11PubMed
50.
go back to reference Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J, Huotilainen M, Tootell RBH, Aronen HJ, Ilmoniemi RJ (1999) Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. J Neurophysiol 82:2545–2555PubMed Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J, Huotilainen M, Tootell RBH, Aronen HJ, Ilmoniemi RJ (1999) Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. J Neurophysiol 82:2545–2555PubMed
51.
go back to reference Odom JV, de Smedt E, van Malderen L, Spileers W (1999) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333 Odom JV, de Smedt E, van Malderen L, Spileers W (1999) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333
52.
go back to reference Kuba M, Toyonaga N, Kubová Z (1992) Motion-reversal visual evoked responses. Physiol Res 41:369–373PubMed Kuba M, Toyonaga N, Kubová Z (1992) Motion-reversal visual evoked responses. Physiol Res 41:369–373PubMed
53.
go back to reference Henning S, Merboldt K, Frahm J (2005) Simultaneous recordings of visual evoked potentials and bold mri activations in response to visual motion processing. NMR Biomed 18:543–552PubMed Henning S, Merboldt K, Frahm J (2005) Simultaneous recordings of visual evoked potentials and bold mri activations in response to visual motion processing. NMR Biomed 18:543–552PubMed
54.
go back to reference Chakor H, Bertone A, McKerral M, Faubert J, Lachapelle P (2005) Visual evoked potentials and reaction time measurements to motion-reversal luminance- and texture-defined stimuli. Doc Ophthalmol 110:163–172PubMed Chakor H, Bertone A, McKerral M, Faubert J, Lachapelle P (2005) Visual evoked potentials and reaction time measurements to motion-reversal luminance- and texture-defined stimuli. Doc Ophthalmol 110:163–172PubMed
55.
go back to reference Clarke PGH (1972) Visual evoked potentials to sudden reversal of the motion of a pattern. Brain Res 36:453–458PubMed Clarke PGH (1972) Visual evoked potentials to sudden reversal of the motion of a pattern. Brain Res 36:453–458PubMed
56.
go back to reference Clarke PGH (1974) Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? Vision Res 14:1281–1284PubMed Clarke PGH (1974) Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? Vision Res 14:1281–1284PubMed
57.
go back to reference Wattam-Bell J (1991) The development of motion-specific cortical responses in infants. Vision Res 32:287–297 Wattam-Bell J (1991) The development of motion-specific cortical responses in infants. Vision Res 32:287–297
58.
go back to reference Snowden RJ, Ullrich D, Bach M (1995) Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus. Vision Res 35:1365–1373PubMed Snowden RJ, Ullrich D, Bach M (1995) Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus. Vision Res 35:1365–1373PubMed
59.
go back to reference Tyler CW, Kaitz M (1977) Movement adaptation in the visual evoked response. Exp Brain Res 27:203–209PubMed Tyler CW, Kaitz M (1977) Movement adaptation in the visual evoked response. Exp Brain Res 27:203–209PubMed
60.
go back to reference Lounasmaa OV, Williamson SJ, Kaufman L, Tanenbaum R (1985) Visual evoked responses from non-accipital areas of human cortex. In: Weinberg H, Stroink G, Katila T (eds) Biomagnetism: applications & theory, 5th world conference on biomagnetism. Pergamon Press, New York, pp 348–353 Lounasmaa OV, Williamson SJ, Kaufman L, Tanenbaum R (1985) Visual evoked responses from non-accipital areas of human cortex. In: Weinberg H, Stroink G, Katila T (eds) Biomagnetism: applications & theory, 5th world conference on biomagnetism. Pergamon Press, New York, pp 348–353
61.
go back to reference Priebe NJ, Churchland MM, Lisberger SG (2002) Constraints on the source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanims. J Neurophysiol 88:354–369PubMed Priebe NJ, Churchland MM, Lisberger SG (2002) Constraints on the source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanims. J Neurophysiol 88:354–369PubMed
62.
go back to reference Bair W, Cavanaugh JR, Smith MA, Movshon JA (2002) The timing of response onset and offset in macaque visual neurons. J Neurosci 22:3189–3205PubMed Bair W, Cavanaugh JR, Smith MA, Movshon JA (2002) The timing of response onset and offset in macaque visual neurons. J Neurosci 22:3189–3205PubMed
63.
go back to reference Bair W (2004) No doubt about offset latency. Vis Neurosci 21:671–674PubMed Bair W (2004) No doubt about offset latency. Vis Neurosci 21:671–674PubMed
64.
go back to reference Kobayashi Y, Yoshino A, Ogasawaram T, ans Nomura S (2002) Topography of evoked potentials associated with illusory motion perception as a motion aftereffect. Cogn Brain Res 13:75–84 Kobayashi Y, Yoshino A, Ogasawaram T, ans Nomura S (2002) Topography of evoked potentials associated with illusory motion perception as a motion aftereffect. Cogn Brain Res 13:75–84
65.
go back to reference Pinilla T, Cobo A, Torres K, Valdes-Sosa M (2001) Attentional shifts between surfaces: effects on detection and early brain potentials. Vision Res 41:1619–1630PubMed Pinilla T, Cobo A, Torres K, Valdes-Sosa M (2001) Attentional shifts between surfaces: effects on detection and early brain potentials. Vision Res 41:1619–1630PubMed
66.
go back to reference Kreegipuu K, Allik J (in press) Detection of motion onset and offset: reaction time and visual evoked potential analysis. Psychol Res. DOI: 10.1007/s00426-006-0059-1 Kreegipuu K, Allik J (in press) Detection of motion onset and offset: reaction time and visual evoked potential analysis. Psychol Res. DOI: 10.1007/s00426-006-0059-1
67.
go back to reference Spileers W, Mangelschots E, Maes H, Orban GA (1996) Visual evoked potentials elicited by a moving unidimensional noise pattern. Electroenceph Clin Neurophysiol 100:287–298PubMed Spileers W, Mangelschots E, Maes H, Orban GA (1996) Visual evoked potentials elicited by a moving unidimensional noise pattern. Electroenceph Clin Neurophysiol 100:287–298PubMed
68.
go back to reference Di Russo F, Pitzalis S, Aprile T, Spitoni G, Patria F, Stella A, Spinelli D, Hillyard SA (in press) Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp. DOI: 10.1002/hbm.20276 Di Russo F, Pitzalis S, Aprile T, Spitoni G, Patria F, Stella A, Spinelli D, Hillyard SA (in press) Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp. DOI: 10.1002/hbm.20276
69.
go back to reference Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A, Zilles K, Niedeggen M, Tass PA (2006) Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. Neuroimage 31:86–108PubMed Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A, Zilles K, Niedeggen M, Tass PA (2006) Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. Neuroimage 31:86–108PubMed
70.
go back to reference Kulikowski JJ (1978) Pattern and movement detection in man and rabbit: separation and comparison of occipital potentials. Vision Res 18:183–189PubMed Kulikowski JJ (1978) Pattern and movement detection in man and rabbit: separation and comparison of occipital potentials. Vision Res 18:183–189PubMed
71.
go back to reference Spekreijse H, Dagnelie G, Maier J, Regan D (1985) Flicker and movement constituents of the pattern reversal response. Vision Res 25:1297–1304PubMed Spekreijse H, Dagnelie G, Maier J, Regan D (1985) Flicker and movement constituents of the pattern reversal response. Vision Res 25:1297–1304PubMed
72.
go back to reference Dagnelie G, de Vries MJ, Maier J, Spekreijse H (1986) Patternreversal stimuli: motion or contrast? Doc Ophthalmol 61:343–349PubMed Dagnelie G, de Vries MJ, Maier J, Spekreijse H (1986) Patternreversal stimuli: motion or contrast? Doc Ophthalmol 61:343–349PubMed
73.
go back to reference Heinrich SP, Bach M (2001) Adaptation dynamics in pattern-reversal visual evoked potentials. Doc Ophthalmol 102:141–156PubMed Heinrich SP, Bach M (2001) Adaptation dynamics in pattern-reversal visual evoked potentials. Doc Ophthalmol 102:141–156PubMed
74.
go back to reference Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D, Hillyard SA (2005) Identification of the neural sources of the pattern-reversal VEP. Neuroimage 24:874–886PubMed Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D, Hillyard SA (2005) Identification of the neural sources of the pattern-reversal VEP. Neuroimage 24:874–886PubMed
75.
go back to reference Hoffmann MB, Seufert PS, Bach M (2004) Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 115:2659–2665PubMed Hoffmann MB, Seufert PS, Bach M (2004) Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 115:2659–2665PubMed
76.
go back to reference Clarke PGH (1973) Comparison of visual evoked potentials to stationary and moving patterns. Exp Brain Res 18:156–164PubMed Clarke PGH (1973) Comparison of visual evoked potentials to stationary and moving patterns. Exp Brain Res 18:156–164PubMed
77.
go back to reference Mackie RT, McCulloch DL, Bradnam MS, Glegg M, Evans AL (1996) The effect of motion on pattern-onset visual evoked potentials in adults and children. Doc Ophthalmol 91:371–380 Mackie RT, McCulloch DL, Bradnam MS, Glegg M, Evans AL (1996) The effect of motion on pattern-onset visual evoked potentials in adults and children. Doc Ophthalmol 91:371–380
78.
go back to reference Buchner H, Gobbele R, Wagner M, Fuchs M, Waberski TD, Beckmann R (1997) Fast visual evoked potential input into human area V5. Neuroreport 8:2419–2422PubMed Buchner H, Gobbele R, Wagner M, Fuchs M, Waberski TD, Beckmann R (1997) Fast visual evoked potential input into human area V5. Neuroreport 8:2419–2422PubMed
79.
go back to reference Patzwahl DR, Zanker JM, Altenmüller EO (1994) Cortical potentials reflecting motion processing in humans. Vis Neurosci 11:1135–1147PubMed Patzwahl DR, Zanker JM, Altenmüller EO (1994) Cortical potentials reflecting motion processing in humans. Vis Neurosci 11:1135–1147PubMed
80.
go back to reference Kuba M, Kremláček J, Kubová Z (1998) Cognitive evoked potentials related to visual perception of motion in human subjects. Physiol Res 47:265–270PubMed Kuba M, Kremláček J, Kubová Z (1998) Cognitive evoked potentials related to visual perception of motion in human subjects. Physiol Res 47:265–270PubMed
81.
go back to reference Kubová Z, Kremláček J, Szanyi J, Chlubnová J, Kuba M (2002) Visual event-related potentials to moving stimuli: normative data. Physiol Res 51:199–204PubMed Kubová Z, Kremláček J, Szanyi J, Chlubnová J, Kuba M (2002) Visual event-related potentials to moving stimuli: normative data. Physiol Res 51:199–204PubMed
82.
go back to reference Jiang Y, Luo YJ, Parasuraman R (2002) Neural correlates of perceptual priming of visual motion. Brain Res Bull 57:211–219PubMed Jiang Y, Luo YJ, Parasuraman R (2002) Neural correlates of perceptual priming of visual motion. Brain Res Bull 57:211–219PubMed
83.
go back to reference Cochin S, Barthelemy C, Roux S, Martineau J (2001) Electroencephalographic activity during perception of motion in childhood. Eur J Neurosci 13:1791–1796PubMed Cochin S, Barthelemy C, Roux S, Martineau J (2001) Electroencephalographic activity during perception of motion in childhood. Eur J Neurosci 13:1791–1796PubMed
84.
go back to reference Krishnan GP, Skosnik PD, Vohs JL, Busey TA, O’Donnell BF (2005) Relationship between steady- state and induced gamma activity to motion. Neuroreport 16:625–630PubMed Krishnan GP, Skosnik PD, Vohs JL, Busey TA, O’Donnell BF (2005) Relationship between steady- state and induced gamma activity to motion. Neuroreport 16:625–630PubMed
85.
go back to reference Patzwahl DR, Zanker JM (2000) Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling. Eur J Neurosci 12:273–282PubMed Patzwahl DR, Zanker JM (2000) Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling. Eur J Neurosci 12:273–282PubMed
86.
go back to reference Jokisch D, Daum I, Suchan B, Troje NF (2005) Structural encoding and recognition of biological motion: evidence from event-related potentials and source analysis. Behav Brain Res 157:195–204PubMed Jokisch D, Daum I, Suchan B, Troje NF (2005) Structural encoding and recognition of biological motion: evidence from event-related potentials and source analysis. Behav Brain Res 157:195–204PubMed
87.
go back to reference Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11B:513–524 Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11B:513–524
88.
go back to reference Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306PubMed Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306PubMed
89.
go back to reference Göpfert E, Müller R, Simon EM (1990) The human motion onset VEP as a function of stimulation area for foveal and peripheral vision. Doc Ophthalmol 75:165–173PubMed Göpfert E, Müller R, Simon EM (1990) The human motion onset VEP as a function of stimulation area for foveal and peripheral vision. Doc Ophthalmol 75:165–173PubMed
90.
go back to reference Markwardt F, Göpfert E, Müller R (1988) Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP. Biomed Biochim Acta 47:753–760PubMed Markwardt F, Göpfert E, Müller R (1988) Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP. Biomed Biochim Acta 47:753–760PubMed
91.
go back to reference Dodt E, Kuba M (1995) Simultaneously recorded retinal and cerebral potentials to windmill stimulation. Doc Ophthalmol 89:287–298PubMed Dodt E, Kuba M (1995) Simultaneously recorded retinal and cerebral potentials to windmill stimulation. Doc Ophthalmol 89:287–298PubMed
92.
go back to reference Kubová Z, Kremláček J, Kuba M, Chlubnová J, Svěrák J (2004) Photopic and scotopic VEPs in patients with congenital stationary night-blindness. Doc Ophthalmol 109:9–15PubMed Kubová Z, Kremláček J, Kuba M, Chlubnová J, Svěrák J (2004) Photopic and scotopic VEPs in patients with congenital stationary night-blindness. Doc Ophthalmol 109:9–15PubMed
93.
go back to reference Kremláček J, Kuba M, Kubová Z, Chlubnová J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109:169–175PubMed Kremláček J, Kuba M, Kubová Z, Chlubnová J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109:169–175PubMed
94.
go back to reference Holliday IE, Meese TS (2005) Neuromagnetic evoked responses to complex motions are greatest for expansion. Int J Psychophysiol 55:145–157PubMed Holliday IE, Meese TS (2005) Neuromagnetic evoked responses to complex motions are greatest for expansion. Int J Psychophysiol 55:145–157PubMed
95.
go back to reference Delon-Martin C, Gobbelé R, Buchner H, Haug BA, Antal A, Darvas F, Paulus W (2006) Temporal pattern of source activities evoked by different types of motion onset stimuli. Neuroimage 31:1567–1579PubMed Delon-Martin C, Gobbelé R, Buchner H, Haug BA, Antal A, Darvas F, Paulus W (2006) Temporal pattern of source activities evoked by different types of motion onset stimuli. Neuroimage 31:1567–1579PubMed
96.
go back to reference Nishiike S, Nakagawa S, Nakagawa A, Uno A, Tonoike M, Takeda N, Kubo T (2002) Magnetic cortical responses evoked by visual linear forward acceleration. Neuroreport 13:1805–1808PubMed Nishiike S, Nakagawa S, Nakagawa A, Uno A, Tonoike M, Takeda N, Kubo T (2002) Magnetic cortical responses evoked by visual linear forward acceleration. Neuroreport 13:1805–1808PubMed
97.
go back to reference Beardsley SA, Vaina LM (2005) Psychophysical evidence for a radial motion bias in complex motion discrimination. Vision Res 45:1569–1586PubMed Beardsley SA, Vaina LM (2005) Psychophysical evidence for a radial motion bias in complex motion discrimination. Vision Res 45:1569–1586PubMed
98.
go back to reference Tobimatsu S, Goto Y, Yamasaki T, Tsurusawa R, Taniwaki T (2004) Non-invasive evaluation of face and motion perception in humans. J Physiol Anthropol Appl Human Sci 23:273–276PubMed Tobimatsu S, Goto Y, Yamasaki T, Tsurusawa R, Taniwaki T (2004) Non-invasive evaluation of face and motion perception in humans. J Physiol Anthropol Appl Human Sci 23:273–276PubMed
99.
go back to reference Maffei L, Campbell FW (1970) Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167:386–387PubMed Maffei L, Campbell FW (1970) Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167:386–387PubMed
100.
go back to reference Müller R, Göpfert E, Hartwig M (1985)VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Kortex des Menschen. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 16:75–80PubMed Müller R, Göpfert E, Hartwig M (1985)VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Kortex des Menschen. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 16:75–80PubMed
101.
go back to reference Maruyama K, Kaneoke Y, Watanabe K, Kakigi R (2002) Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neurosci Res 44:195–205PubMed Maruyama K, Kaneoke Y, Watanabe K, Kakigi R (2002) Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neurosci Res 44:195–205PubMed
102.
go back to reference Nakamura Y, Ohtsuka K (1999) Topographical analysis of motion-triggered visual evoked potentials in man. Jpn J Ophthalmol 43:36–43PubMed Nakamura Y, Ohtsuka K (1999) Topographical analysis of motion-triggered visual evoked potentials in man. Jpn J Ophthalmol 43:36–43PubMed
103.
go back to reference Kawakami O, Kaneoke Y, Maruyama K, Kakigi R, Okada T, Sadato N, Yonekura Y (2002) Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG. Hum Brain Mapp 16:104–118PubMed Kawakami O, Kaneoke Y, Maruyama K, Kakigi R, Okada T, Sadato N, Yonekura Y (2002) Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG. Hum Brain Mapp 16:104–118PubMed
104.
go back to reference Chlubnová J, Kremláček J, Kubová Z, Kuba M (2005) Visual evoked potentials and event related potentials in congenitally deaf subjects. Physiol Res 54:577–583PubMed Chlubnová J, Kremláček J, Kubová Z, Kuba M (2005) Visual evoked potentials and event related potentials in congenitally deaf subjects. Physiol Res 54:577–583PubMed
105.
go back to reference Lorteije JAM, Kenemans JL, Jellema T, van der Lubbe RHJ, de Heer F, van Wezel RJA (2006) Delayed response to animate implied motion in human motion processing areas. J Cogn Neurosci 18:158–168PubMed Lorteije JAM, Kenemans JL, Jellema T, van der Lubbe RHJ, de Heer F, van Wezel RJA (2006) Delayed response to animate implied motion in human motion processing areas. J Cogn Neurosci 18:158–168PubMed
106.
go back to reference American Encephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113 American Encephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113
107.
go back to reference Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion onset visual evoked potentials and subjective estimates. Vision Res 39:437–444PubMed Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion onset visual evoked potentials and subjective estimates. Vision Res 39:437–444PubMed
108.
go back to reference Heinrich SP, Schilling AM, Bach M (2006) Motion adaptation: net duration matters, not continuousness. Exp Brain Res 169:461–466PubMed Heinrich SP, Schilling AM, Bach M (2006) Motion adaptation: net duration matters, not continuousness. Exp Brain Res 169:461–466PubMed
109.
go back to reference Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan (2004) Visual evoked potentials standard (2004). Doc Ophthalmol 108:115–123PubMed Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan (2004) Visual evoked potentials standard (2004). Doc Ophthalmol 108:115–123PubMed
110.
go back to reference Kubová Z, Kuba M, Hrochova J, Sverak J (1996) Motion-onset visual evoked potentials improve the diagnosis of glaucoma. Doc Ophthalmol 92:211–221PubMed Kubová Z, Kuba M, Hrochova J, Sverak J (1996) Motion-onset visual evoked potentials improve the diagnosis of glaucoma. Doc Ophthalmol 92:211–221PubMed
111.
go back to reference Skrandies W, Jedynak A, Kleiser R (1998) Scalp distribution components of brain activity evoked by visual motion stimuli. Exp Brain Res 122:62–70PubMed Skrandies W, Jedynak A, Kleiser R (1998) Scalp distribution components of brain activity evoked by visual motion stimuli. Exp Brain Res 122:62–70PubMed
112.
go back to reference Kremláček J, Kuba M, Holčík J (2002) Model of visually evoked cortical potentials. Physiol Res 51:65–71PubMed Kremláček J, Kuba M, Holčík J (2002) Model of visually evoked cortical potentials. Physiol Res 51:65–71PubMed
113.
go back to reference Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vision Res 27:165–177PubMed Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vision Res 27:165–177PubMed
114.
go back to reference Kremláček J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMed Kremláček J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMed
115.
go back to reference Victor JD, Mast J (1990) A new statistic for steady-state evoked potentials. Electroenceph Clin Neurophysiol 78:378–388 Victor JD, Mast J (1990) A new statistic for steady-state evoked potentials. Electroenceph Clin Neurophysiol 78:378–388
116.
go back to reference Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98:207–232PubMed Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98:207–232PubMed
117.
go back to reference De Vries M, van Dijk B, Spekreijse H (1989) Motion onset-offset VEPs in children. Electroenceph Clin Neurophysiol 74:81–87PubMed De Vries M, van Dijk B, Spekreijse H (1989) Motion onset-offset VEPs in children. Electroenceph Clin Neurophysiol 74:81–87PubMed
118.
go back to reference Norcia AM, Garcia H, Humphry R, Holmes A, Hamer RD, Orel-Bixler D (1991) Anomalous motion VEPs in infants and in infantile esotropia. Invest Ophthalmol Vis Sci 32:436–439 Norcia AM, Garcia H, Humphry R, Holmes A, Hamer RD, Orel-Bixler D (1991) Anomalous motion VEPs in infants and in infantile esotropia. Invest Ophthalmol Vis Sci 32:436–439
119.
go back to reference Braddick O, Birtles D, Wattam-Bell J, Atkinson J (2005) Motion- and orientation-specific responses in infancy. Vision Res 45:3169–3179PubMed Braddick O, Birtles D, Wattam-Bell J, Atkinson J (2005) Motion- and orientation-specific responses in infancy. Vision Res 45:3169–3179PubMed
120.
go back to reference Hamer RD, Norcia AM (1994) The development of motion sensitivity during the first year of life. Vision Res 34:2387–2402PubMed Hamer RD, Norcia AM (1994) The development of motion sensitivity during the first year of life. Vision Res 34:2387–2402PubMed
121.
go back to reference Birch EE, Fawcett S, Stager D (2000) Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Invest Ophthalmol Vis Sci 41:1719–1723PubMed Birch EE, Fawcett S, Stager D (2000) Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Invest Ophthalmol Vis Sci 41:1719–1723PubMed
122.
go back to reference Mitchell TV, Neville HJ (2004) Asynchronies in the development of electrophysiological responses to motion and color. J Cogn Neurosci 16:1363–1374PubMed Mitchell TV, Neville HJ (2004) Asynchronies in the development of electrophysiological responses to motion and color. J Cogn Neurosci 16:1363–1374PubMed
123.
go back to reference Korth M, Kohl S, Martus P, Sembritzki O (2000) Motion-evoked pattern visual evoked potentials in glaucoma. J Glaucoma 9:376–387PubMed Korth M, Kohl S, Martus P, Sembritzki O (2000) Motion-evoked pattern visual evoked potentials in glaucoma. J Glaucoma 9:376–387PubMed
124.
go back to reference Langrová J, Kuba M, Kremláček J, Kubová Z, Vít F (2006) Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vision Res 46:536–544PubMed Langrová J, Kuba M, Kremláček J, Kubová Z, Vít F (2006) Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vision Res 46:536–544PubMed
125.
go back to reference Coch D, Skendzel W, Grossi G, Neville H (2005) Motion and color processing in school-age children and adults: an ERP study. Dev Sci 8:372–386PubMed Coch D, Skendzel W, Grossi G, Neville H (2005) Motion and color processing in school-age children and adults: an ERP study. Dev Sci 8:372–386PubMed
126.
go back to reference Müller R, Göpfert E, Breuer D, Greenlee MW (1999) Motion VEPs with simultaneous measurement of perceived velocity. Doc Ophthalmol 97:121–134 Müller R, Göpfert E, Breuer D, Greenlee MW (1999) Motion VEPs with simultaneous measurement of perceived velocity. Doc Ophthalmol 97:121–134
127.
go back to reference Müller R, Bochmann G, Greenlee MW, Göpfert E (2003) Relationship between motion VEP and perceived velocity of gratings: effects of stimulus speed and motion adaptation. Doc Ophthalmol 107:115–126PubMed Müller R, Bochmann G, Greenlee MW, Göpfert E (2003) Relationship between motion VEP and perceived velocity of gratings: effects of stimulus speed and motion adaptation. Doc Ophthalmol 107:115–126PubMed
128.
go back to reference Wang L, Kaneoke Y, Kakigi R (2003) Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study. Neurosci Res 47:109–116PubMed Wang L, Kaneoke Y, Kakigi R (2003) Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study. Neurosci Res 47:109–116PubMed
129.
go back to reference Gallichio JA, Andreassi JL (1982) Visual evoked potentials under varied velocities of continuous and discrete apparent motion. Int J Neurosci 17:169–177PubMedCrossRef Gallichio JA, Andreassi JL (1982) Visual evoked potentials under varied velocities of continuous and discrete apparent motion. Int J Neurosci 17:169–177PubMedCrossRef
130.
go back to reference Kaneoke Y, Bundou M, Koyama S, Suzuki H, Kakigi R (1997) Human cortical area responding to stimuli in apparent motion. Neuroreport 8:677–682PubMed Kaneoke Y, Bundou M, Koyama S, Suzuki H, Kakigi R (1997) Human cortical area responding to stimuli in apparent motion. Neuroreport 8:677–682PubMed
131.
go back to reference Kawakami O, Kaneoke Y, Kakigi R (2000) Perception of apparent motion is related to the neural activity in the human extrastriate cortex as measured by magnetoencephalography. Neurosci Lett 285:135–138PubMed Kawakami O, Kaneoke Y, Kakigi R (2000) Perception of apparent motion is related to the neural activity in the human extrastriate cortex as measured by magnetoencephalography. Neurosci Lett 285:135–138PubMed
132.
go back to reference Clifford CWG, Langley K (1996) Psychophysics of motion adaptation parallels insect electrophysiology. Curr Biol 6:1340–1342PubMed Clifford CWG, Langley K (1996) Psychophysics of motion adaptation parallels insect electrophysiology. Curr Biol 6:1340–1342PubMed
133.
go back to reference Hammett ST, Thompson PG, Bedingham S (2000) The dynamics of velocity adaptation in human vision. Curr Biol 10:1123–1126PubMed Hammett ST, Thompson PG, Bedingham S (2000) The dynamics of velocity adaptation in human vision. Curr Biol 10:1123–1126PubMed
134.
go back to reference Uusitalo MA, Jousmäki V, Hari R (1997) Activation trace lifetime of human cortical responses evoked by apparent visual motion. Neurosci Lett 224:45–48PubMed Uusitalo MA, Jousmäki V, Hari R (1997) Activation trace lifetime of human cortical responses evoked by apparent visual motion. Neurosci Lett 224:45–48PubMed
135.
go back to reference Amano K, Nishida S, Takeda T (2006) MEG responses correlated with the visual perception of velocity change. Vision Res 46:336–345PubMed Amano K, Nishida S, Takeda T (2006) MEG responses correlated with the visual perception of velocity change. Vision Res 46:336–345PubMed
136.
go back to reference Greenlee MW, Heitger F (1988) The functional role of contrast adaptation. Vision Res 28:791–797PubMed Greenlee MW, Heitger F (1988) The functional role of contrast adaptation. Vision Res 28:791–797PubMed
137.
go back to reference Kremláček J, Kuba M, Chlubnová J, Kubová Z (2006) Visual mismatch negativity elicited by magnocellular system activation. Vision Res 46:485–490PubMed Kremláček J, Kuba M, Chlubnová J, Kubová Z (2006) Visual mismatch negativity elicited by magnocellular system activation. Vision Res 46:485–490PubMed
138.
go back to reference Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of evidence. Psychophysiol 42:25–32 Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of evidence. Psychophysiol 42:25–32
139.
go back to reference McKeefry DJ (2001) Chromatic visual evoked potentials elicited by fast and slow motion onset. Col Res Appl 26:S145–S149 McKeefry DJ (2001) Chromatic visual evoked potentials elicited by fast and slow motion onset. Col Res Appl 26:S145–S149
140.
go back to reference McKeefry DJ (2002) The influence of stimulus chromaticity on the isoluminant motion-onset VEP. Vision Res 42:909–922PubMed McKeefry DJ (2002) The influence of stimulus chromaticity on the isoluminant motion-onset VEP. Vision Res 42:909–922PubMed
141.
go back to reference McKeefry DJ (2001) Motion adaptation in chromatic motion-onset visual evoked potentials. Doc Ophthalmol 103:229–251PubMed McKeefry DJ (2001) Motion adaptation in chromatic motion-onset visual evoked potentials. Doc Ophthalmol 103:229–251PubMed
142.
go back to reference Morand S, Thut G, de Peralta RG, Clarke S, Khateb A, Landis T, Michel CM (2000) Electrophysiological evidence for fast visual processing through the human koniocellular pathway. Cereb Cortex 10:817–825PubMed Morand S, Thut G, de Peralta RG, Clarke S, Khateb A, Landis T, Michel CM (2000) Electrophysiological evidence for fast visual processing through the human koniocellular pathway. Cereb Cortex 10:817–825PubMed
143.
go back to reference Victor JD, Conte MM (1992) Evoked potential and psychophysical analysis of fourier and non-fourier motion mechanisms. Vis Neurosci 9:105—123PubMedCrossRef Victor JD, Conte MM (1992) Evoked potential and psychophysical analysis of fourier and non-fourier motion mechanisms. Vis Neurosci 9:105—123PubMedCrossRef
144.
go back to reference Ellemberg D, Lavoie K, Lewis TL, Maurer D, Lepore F, Guillemot JP (2003) Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion. Vision Res 43:651–658PubMed Ellemberg D, Lavoie K, Lewis TL, Maurer D, Lepore F, Guillemot JP (2003) Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion. Vision Res 43:651–658PubMed
145.
go back to reference Sofue A, Kaneoke Y, Kakigi R (2003) Physiological evidence of interaction of first- and second-order motion processes in the human visual system: a magnetoencephalographic study. Hum Brain Mapp 20:158–167PubMed Sofue A, Kaneoke Y, Kakigi R (2003) Physiological evidence of interaction of first- and second-order motion processes in the human visual system: a magnetoencephalographic study. Hum Brain Mapp 20:158–167PubMed
146.
go back to reference Thier P, Haarmeier T, Chakraborty S, Lindner A, Tikhonov A (2001) Cortical substrates of perceptual stability during eye movements. Neuroimage 14:533–539 Thier P, Haarmeier T, Chakraborty S, Lindner A, Tikhonov A (2001) Cortical substrates of perceptual stability during eye movements. Neuroimage 14:533–539
147.
go back to reference Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151PubMed Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151PubMed
148.
go back to reference Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W (2003) Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 21:590–600 Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W (2003) Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 21:590–600
149.
go back to reference Armington JC, Bloom MB (1974) Relations between the amplitudes of spontaneous saccades and visual responses. J Opt Soc Am 64:1263–1271PubMed Armington JC, Bloom MB (1974) Relations between the amplitudes of spontaneous saccades and visual responses. J Opt Soc Am 64:1263–1271PubMed
150.
go back to reference Kleiser R, Skrandies W (2000) Neural correlates of reafference: evoked brain activity during motion perception and saccadic eye movements. Exp Brain Res 133:312–320PubMed Kleiser R, Skrandies W (2000) Neural correlates of reafference: evoked brain activity during motion perception and saccadic eye movements. Exp Brain Res 133:312–320PubMed
151.
go back to reference Torriente I, Valdes-Sosa M, Ramirez D, Bobes MA (1999) Visual evoked potentials related to motion-onset are modulated by attention. Vision Res 39:4122–4139PubMed Torriente I, Valdes-Sosa M, Ramirez D, Bobes MA (1999) Visual evoked potentials related to motion-onset are modulated by attention. Vision Res 39:4122–4139PubMed
152.
go back to reference Pazo-Alvares P, Amenedo E, Cadaveira F (2004) Automatic detection of motion direction changes in the human brain. Eur J Neurosci 19:1978–1986 Pazo-Alvares P, Amenedo E, Cadaveira F (2004) Automatic detection of motion direction changes in the human brain. Eur J Neurosci 19:1978–1986
153.
go back to reference Lorenzo-López L, Amenedo E, Pazo-Alvares P, Cadaveira F (2004) Pre-attentive detection of motion direction changes in normal aging. Neuroreport 15:2633–2636PubMed Lorenzo-López L, Amenedo E, Pazo-Alvares P, Cadaveira F (2004) Pre-attentive detection of motion direction changes in normal aging. Neuroreport 15:2633–2636PubMed
154.
go back to reference Anllo-Vento L, Hillyard SA (1996) Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection. Percept Psychophys 58:191–206PubMed Anllo-Vento L, Hillyard SA (1996) Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection. Percept Psychophys 58:191–206PubMed
155.
go back to reference Martín-Loeches M, Hinojosa JA, Rubia FJ (1999) Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention. Psychophysiology 36:721–736PubMed Martín-Loeches M, Hinojosa JA, Rubia FJ (1999) Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention. Psychophysiology 36:721–736PubMed
156.
go back to reference Valdes-Sosa M, Bobes MA, Rodriguez V, Pinilla T (1998) Switching attention without shifting the spotlight: object-based attentional odulation of brain potentials. J Cogn Neurosci 10:137–151PubMed Valdes-Sosa M, Bobes MA, Rodriguez V, Pinilla T (1998) Switching attention without shifting the spotlight: object-based attentional odulation of brain potentials. J Cogn Neurosci 10:137–151PubMed
157.
go back to reference Niedeggen M, Sahraie A, Hesselmann G, Milders M, Blakemore C (2002) Is experimental motion blindness due to sensory suppression? An ERP approach. Cogn Brain Res 13:241–247 Niedeggen M, Sahraie A, Hesselmann G, Milders M, Blakemore C (2002) Is experimental motion blindness due to sensory suppression? An ERP approach. Cogn Brain Res 13:241–247
158.
go back to reference Niedeggen M, Hesselmann G, Sahraie A, Milders M, Blakemore C (2004) Probing the prerequisites for motion blindness. J Cogn Neurosci 16:584–597PubMed Niedeggen M, Hesselmann G, Sahraie A, Milders M, Blakemore C (2004) Probing the prerequisites for motion blindness. J Cogn Neurosci 16:584–597PubMed
159.
go back to reference Rodríguez V, Valdés-Sosa M (2006) Sensory suppression during shifts of attention between surfaces in transparent motion. Brain Res 1072:110–118PubMed Rodríguez V, Valdés-Sosa M (2006) Sensory suppression during shifts of attention between surfaces in transparent motion. Brain Res 1072:110–118PubMed
160.
go back to reference Fort A, Besle J, Giard MH, Pernier J (2005) Task-dependent activation latency in human visual extrastriate cortex. Neurosci Lett 379:144–148PubMed Fort A, Besle J, Giard MH, Pernier J (2005) Task-dependent activation latency in human visual extrastriate cortex. Neurosci Lett 379:144–148PubMed
161.
go back to reference Beer AL, Röder B (2005) Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. Eur J Neurosci 21:1116–1130PubMed Beer AL, Röder B (2005) Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. Eur J Neurosci 21:1116–1130PubMed
162.
go back to reference Armstrong BA, Neville HJ, Hillyard SA, Mitchell TV (2002) Auditory deprevation affects processing of motion, but not color. Cogn Brain Res 14:422–434 Armstrong BA, Neville HJ, Hillyard SA, Mitchell TV (2002) Auditory deprevation affects processing of motion, but not color. Cogn Brain Res 14:422–434
163.
go back to reference Probst T, Wist ER (1990) Electrophysiological evidence for visual-vestibular interactions in man. Neurosci Lett 108:255–260PubMed Probst T, Wist ER (1990) Electrophysiological evidence for visual-vestibular interactions in man. Neurosci Lett 108:255–260PubMed
164.
go back to reference Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vison Res 40:2379–2385 Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vison Res 40:2379–2385
165.
go back to reference Korth M, Rix R, Sembritzki O (2000) The sequential processing of visual motion in the human electroretinogram and visual evoked potential. Vis Neurosci 17:631–646PubMed Korth M, Rix R, Sembritzki O (2000) The sequential processing of visual motion in the human electroretinogram and visual evoked potential. Vis Neurosci 17:631–646PubMed
166.
go back to reference Matsumoto R, Ikeda A, Nagamine T, Matsuhashi M, Ohara S, Yamamoto J, Toma K, Mikuni N, Takahashi J, Miyamoto S, Fukuyama H, Shibasaki H (2004) Subregions of human MT complex revealed by comparative MEG and direct electrocorticographic recordings. Clin Neurophysiol 115:2056–2065PubMed Matsumoto R, Ikeda A, Nagamine T, Matsuhashi M, Ohara S, Yamamoto J, Toma K, Mikuni N, Takahashi J, Miyamoto S, Fukuyama H, Shibasaki H (2004) Subregions of human MT complex revealed by comparative MEG and direct electrocorticographic recordings. Clin Neurophysiol 115:2056–2065PubMed
167.
go back to reference Uusitalo MA, Virsu V, Salenius S, Näsänen R, Hari R (1997) Activation of human V5 complex and rolandic regions in association with moving visual stimuli. Neuroimage 5:241–250PubMed Uusitalo MA, Virsu V, Salenius S, Näsänen R, Hari R (1997) Activation of human V5 complex and rolandic regions in association with moving visual stimuli. Neuroimage 5:241–250PubMed
168.
go back to reference Azzopardi P, Fallah M, Gross CG, Rodman HR (2003) Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions. Neuropsychologia 41:1738–1756PubMed Azzopardi P, Fallah M, Gross CG, Rodman HR (2003) Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions. Neuropsychologia 41:1738–1756PubMed
169.
go back to reference Müller R, Göpfert E, Schlykowa L, Anke D (1990) The human motion VEP as a function of size and eccentricity of the stimulation field. Doc Ophthalmol 76:81–89PubMed Müller R, Göpfert E, Schlykowa L, Anke D (1990) The human motion VEP as a function of size and eccentricity of the stimulation field. Doc Ophthalmol 76:81–89PubMed
170.
go back to reference Kremláček J, Kuba M, Chlubnová J, Kubová Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44:2989–3000PubMed Kremláček J, Kuba M, Chlubnová J, Kubová Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44:2989–3000PubMed
171.
go back to reference Yokoyama M, Matsunaga I, Yonekura Y, Shinzato K (1979) The visual evoked response to a moving pattern. In: Tazawa Y (ed) Proceedings of the XVIth Symposium of the International Society for Clinical Electrophysiology of Vision—Morioka, 24–28 May 1978, Jpn J Ophthalmol, Tokyo, pp 207–214 Yokoyama M, Matsunaga I, Yonekura Y, Shinzato K (1979) The visual evoked response to a moving pattern. In: Tazawa Y (ed) Proceedings of the XVIth Symposium of the International Society for Clinical Electrophysiology of Vision—Morioka, 24–28 May 1978, Jpn J Ophthalmol, Tokyo, pp 207–214
172.
go back to reference Takao M, Miyata Y (2001) Spatial property of motion visual evoked potentials. Percept Mot Skills 93:735–738PubMed Takao M, Miyata Y (2001) Spatial property of motion visual evoked potentials. Percept Mot Skills 93:735–738PubMed
173.
go back to reference Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Cogn Brain Res 8:95–105 Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Cogn Brain Res 8:95–105
174.
go back to reference Ulbert I, Karmos G, Heit G, Halgren E (2001) Early discrimination of coherent versus incoherent motion by multiunit and syaptic activity in human putative MT+. Hum Brain Mapp 13:226–238PubMed Ulbert I, Karmos G, Heit G, Halgren E (2001) Early discrimination of coherent versus incoherent motion by multiunit and syaptic activity in human putative MT+. Hum Brain Mapp 13:226–238PubMed
175.
go back to reference Lam K, Kaneoke Y, Gunji A, Yamasaki H, Matsumoto E, Naito T, Kakigi R (2000) Magnetic response of human extrastriate cortex in the detection of coherent and incoherent motion. Neuroscience 97:1–10PubMed Lam K, Kaneoke Y, Gunji A, Yamasaki H, Matsumoto E, Naito T, Kakigi R (2000) Magnetic response of human extrastriate cortex in the detection of coherent and incoherent motion. Neuroscience 97:1–10PubMed
176.
go back to reference Lam K, Kaneoke Y, Kakigi R (2003) Human cortical response to incoherent motion on a background of coherent motion. Neurosci Lett 247:41–44 Lam K, Kaneoke Y, Kakigi R (2003) Human cortical response to incoherent motion on a background of coherent motion. Neurosci Lett 247:41–44
177.
go back to reference Niedeggen M, Wist ER (1998) Motion evoked brain potentials parallel the consistency of coherent motion perception in humans. Neurosci Lett 246:61–64PubMed Niedeggen M, Wist ER (1998) Motion evoked brain potentials parallel the consistency of coherent motion perception in humans. Neurosci Lett 246:61–64PubMed
178.
go back to reference Aspell JE, Tanskanen T, Hurlbert AC (2005) Neuromagnetic correlates of visual motion coherence. Eur J Neurosci 22:2937–2945PubMed Aspell JE, Tanskanen T, Hurlbert AC (2005) Neuromagnetic correlates of visual motion coherence. Eur J Neurosci 22:2937–2945PubMed
179.
go back to reference Amano K, Goda N, Nishida S, Ejima Y, Takeda T, Ohtani Y (2006) Estimation of the timing of human visual perception from magnetoencephalography. J Neurosci 26:3981–3991PubMed Amano K, Goda N, Nishida S, Ejima Y, Takeda T, Ohtani Y (2006) Estimation of the timing of human visual perception from magnetoencephalography. J Neurosci 26:3981–3991PubMed
180.
go back to reference ffytche DH, Guy CN, Zeki S (1995) The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118:86–96 ffytche DH, Guy CN, Zeki S (1995) The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118:86–96
181.
go back to reference Schoenfeld MA, Heinze HJ, Woldorff MG (2002) Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex. Neuroimage 17:769–779PubMed Schoenfeld MA, Heinze HJ, Woldorff MG (2002) Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex. Neuroimage 17:769–779PubMed
182.
go back to reference Benson PJ, Guo K, Hardiman MJ (1999) Cortical evoked potentials due to motion contrast in the blind hemifield. Neuroreport 10:3595–3600PubMedCrossRef Benson PJ, Guo K, Hardiman MJ (1999) Cortical evoked potentials due to motion contrast in the blind hemifield. Neuroreport 10:3595–3600PubMedCrossRef
183.
go back to reference Rasmussen CA, Kaufman PL (2005) Primate glaucoma models. J Glaucoma 14:311–314PubMed Rasmussen CA, Kaufman PL (2005) Primate glaucoma models. J Glaucoma 14:311–314PubMed
184.
go back to reference Shabana N, Pérès VC, Carkeet A, Chew PTK (2003) Motion perception in glaucoma patients: a review. Surv Ophthalmol 48:92–106PubMed Shabana N, Pérès VC, Carkeet A, Chew PTK (2003) Motion perception in glaucoma patients: a review. Surv Ophthalmol 48:92–106PubMed
185.
go back to reference Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol Suppl 11:S41–S49 Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol Suppl 11:S41–S49
186.
go back to reference Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, Bomer TG, Funk J (2006) Pattern erg as early risk indicator in ocular hypertension—a long-term prospective study. Invest Ophthalmol Vis Sci 47:4881–4887PubMed Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, Bomer TG, Funk J (2006) Pattern erg as early risk indicator in ocular hypertension—a long-term prospective study. Invest Ophthalmol Vis Sci 47:4881–4887PubMed
187.
go back to reference Kubová Z, Kuba M (1992) Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 81:209–218PubMed Kubová Z, Kuba M (1992) Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 81:209–218PubMed
188.
go back to reference Kubová Z, Kuba M (1995) Motion-onset VEPs improve the diagnostics of multiple sclerosis and optic neuritis. Sbor věd Prací LF UK Hradec Králové 38:89–93 Kubová Z, Kuba M (1995) Motion-onset VEPs improve the diagnostics of multiple sclerosis and optic neuritis. Sbor věd Prací LF UK Hradec Králové 38:89–93
189.
go back to reference Herbst H, Ketabi A, Thier P, Dichgans J (1997) Comparison of psychophysical and evoked potential methods in the detection of visual deficits in multiple sclerosis. Electroenceph Clin Neurophysiol 104:82–90PubMed Herbst H, Ketabi A, Thier P, Dichgans J (1997) Comparison of psychophysical and evoked potential methods in the detection of visual deficits in multiple sclerosis. Electroenceph Clin Neurophysiol 104:82–90PubMed
190.
go back to reference Tobimatsu S, Kato M (1998) Multimodality visual evoked potentials in evaluating visual dysfunction in optic neuritis. Neurology 50:715–718PubMed Tobimatsu S, Kato M (1998) Multimodality visual evoked potentials in evaluating visual dysfunction in optic neuritis. Neurology 50:715–718PubMed
191.
go back to reference Kubová Z, Kuba M, Juran J, Blakemore C (1996) Is the motion system relatively spared in amplyopia? Evidence from cortical evoked potentials. Vision Res 36:181–190PubMed Kubová Z, Kuba M, Juran J, Blakemore C (1996) Is the motion system relatively spared in amplyopia? Evidence from cortical evoked potentials. Vision Res 36:181–190PubMed
192.
go back to reference Ellemberg D, Lewis TL, Maurer D, Brar S, Brent HP (2002) Better perception of global motion after monocular than after binocular deprivation. Vision Res 42:169–179PubMed Ellemberg D, Lewis TL, Maurer D, Brar S, Brent HP (2002) Better perception of global motion after monocular than after binocular deprivation. Vision Res 42:169–179PubMed
193.
go back to reference Constantinescu T, Schmidt L, Watson R, Hess RF (2005) A residual deficit for global motion processing after acuity recovery in deprivation amblyopia. Invest Ophthalmol Vis Sci 46:3008–3012PubMed Constantinescu T, Schmidt L, Watson R, Hess RF (2005) A residual deficit for global motion processing after acuity recovery in deprivation amblyopia. Invest Ophthalmol Vis Sci 46:3008–3012PubMed
194.
go back to reference Ho CS, Giashi DE, Boden C, Doughterty R, Cline R, Lyons C (2005) Deficient motion perception in the fellow eye of amblyopic children. Vision Res 45:1615–1627PubMed Ho CS, Giashi DE, Boden C, Doughterty R, Cline R, Lyons C (2005) Deficient motion perception in the fellow eye of amblyopic children. Vision Res 45:1615–1627PubMed
195.
go back to reference Norcia AM (1996) Abnormal motion processing and binocularity: infantile esotropia as a model system for effects of early interruptions of binocularity. Eye 10:259–265PubMed Norcia AM (1996) Abnormal motion processing and binocularity: infantile esotropia as a model system for effects of early interruptions of binocularity. Eye 10:259–265PubMed
196.
go back to reference Shea SJ, Chandna A, Norcia AM (1999) Oscillatory motion but not pattern reversal elicits monocular motion biases in infantile esotropia. Vision Res 39:1803–1811PubMed Shea SJ, Chandna A, Norcia AM (1999) Oscillatory motion but not pattern reversal elicits monocular motion biases in infantile esotropia. Vision Res 39:1803–1811PubMed
197.
go back to reference Anteby I, Zhai HF, Tychsen L (1998) Asymmetric motion visually evoked potentials in infantile strabismus are not an artifact of latent nystagmus. J AAPOS 2:153–158PubMedCrossRef Anteby I, Zhai HF, Tychsen L (1998) Asymmetric motion visually evoked potentials in infantile strabismus are not an artifact of latent nystagmus. J AAPOS 2:153–158PubMedCrossRef
198.
go back to reference Wilson JR, Noyd WW, Aiyer AD, Norcia AM, Mustari MJ, Boothe RG (1999) Asymmetric responses in cortical visually evoked potentials to motion are not derived from eye movements. Invest Ophthalmol Vis Sci 40:2435–2439PubMed Wilson JR, Noyd WW, Aiyer AD, Norcia AM, Mustari MJ, Boothe RG (1999) Asymmetric responses in cortical visually evoked potentials to motion are not derived from eye movements. Invest Ophthalmol Vis Sci 40:2435–2439PubMed
199.
go back to reference Norcia AM, Hamer RD, Jampolsky A, Orel-Bixler D (1995) Plasticity of human motion processing mechanisms following surgery for infantile esotropia. Vision Res 35:3279–3296PubMed Norcia AM, Hamer RD, Jampolsky A, Orel-Bixler D (1995) Plasticity of human motion processing mechanisms following surgery for infantile esotropia. Vision Res 35:3279–3296PubMed
200.
go back to reference Tychsen L, Wong WMF, Foeller P, Bradley D (2004) Early versus delayed repair of infantile strabismus in macaque monkeys: II. Effects on motion visually evoked responses. Invest Ophthalmol Vis Sci 45:821–827PubMed Tychsen L, Wong WMF, Foeller P, Bradley D (2004) Early versus delayed repair of infantile strabismus in macaque monkeys: II. Effects on motion visually evoked responses. Invest Ophthalmol Vis Sci 45:821–827PubMed
201.
go back to reference Kommerell G, Ullrich D, Gilles U, Bach M (1995) Asymmetry of motion VEP in infantile strabismus and in central vestibular nystagmus. Doc Ophthalmol 89:373–381PubMed Kommerell G, Ullrich D, Gilles U, Bach M (1995) Asymmetry of motion VEP in infantile strabismus and in central vestibular nystagmus. Doc Ophthalmol 89:373–381PubMed
202.
go back to reference Brosnahan D, Norcia AM, Schor CM, Taylor DG (1998) OKN, perceptual and VEP direction biases in strabismus. Vision Res 38:2833–2840PubMed Brosnahan D, Norcia AM, Schor CM, Taylor DG (1998) OKN, perceptual and VEP direction biases in strabismus. Vision Res 38:2833–2840PubMed
203.
go back to reference Mason AJ, Braddick OJ, Wattam-Bell J, Atkinson J (2001) Directional motion asymmetry in infant VEPs–which direction? Vision Res 41:201–211PubMed Mason AJ, Braddick OJ, Wattam-Bell J, Atkinson J (2001) Directional motion asymmetry in infant VEPs–which direction? Vision Res 41:201–211PubMed
204.
go back to reference Fawcett SL, Birch EE (2000) Motion VEPs, stereopsis, and bifoveal fusion in children with strabismus. Invest Ophthalmol Vis Sci 41:411–416PubMed Fawcett SL, Birch EE (2000) Motion VEPs, stereopsis, and bifoveal fusion in children with strabismus. Invest Ophthalmol Vis Sci 41:411–416PubMed
205.
go back to reference Livingstone MS, Rosen GD, Drislane FW, Galaburda AM (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci USA 88:7943–7947PubMed Livingstone MS, Rosen GD, Drislane FW, Galaburda AM (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci USA 88:7943–7947PubMed
206.
go back to reference Skottun BC (2000) The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Res 40:111–127PubMed Skottun BC (2000) The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Res 40:111–127PubMed
207.
go back to reference Stein J, Talcott J, Walsh VV (2000) Controversy about the visual magnocellular deficit in developmental dyslexics. Trends Cogn Sci 4:209–211PubMed Stein J, Talcott J, Walsh VV (2000) Controversy about the visual magnocellular deficit in developmental dyslexics. Trends Cogn Sci 4:209–211PubMed
208.
go back to reference Kubová Z, Kuba M, Peregrin J, Nováková (1995) Visual evoked potential evidence for magnocellular system deficit in dyslexia. Physiol Res 44:87–89 Kubová Z, Kuba M, Peregrin J, Nováková (1995) Visual evoked potential evidence for magnocellular system deficit in dyslexia. Physiol Res 44:87–89
209.
go back to reference Kuba M, Szanyi J, Gayer D, Kremláček J, Kubová Z (2001) Electrophysiological testing of dyslexia. Acta Medica (Hradec Králocé) 44:131–134 Kuba M, Szanyi J, Gayer D, Kremláček J, Kubová Z (2001) Electrophysiological testing of dyslexia. Acta Medica (Hradec Králocé) 44:131–134
210.
go back to reference Schulte-Körne G, Bartling J, Deimel W, Remschmidt H (2004) Motion-onset VEPs in dyslexia. evidence for visual perceptual deficit. Neuroreport 15:1075–1078PubMed Schulte-Körne G, Bartling J, Deimel W, Remschmidt H (2004) Motion-onset VEPs in dyslexia. evidence for visual perceptual deficit. Neuroreport 15:1075–1078PubMed
211.
go back to reference Schulte-Körne G, Bartling J, Deimel W, Remschmidt H (2004) Visual evoked potential elicited by coherently moving dots in dyslexic children. Neurosci Lett 357:207–210PubMed Schulte-Körne G, Bartling J, Deimel W, Remschmidt H (2004) Visual evoked potential elicited by coherently moving dots in dyslexic children. Neurosci Lett 357:207–210PubMed
212.
go back to reference Skottun BC, Skoyles JR (2004) Some remarks on the use of motion VEPs to assess magnocellular sensitivity. Clin Neurophysiol 115:2834–2836PubMed Skottun BC, Skoyles JR (2004) Some remarks on the use of motion VEPs to assess magnocellular sensitivity. Clin Neurophysiol 115:2834–2836PubMed
213.
go back to reference Kuba M, Kremláček J, Hulek P, Kubová Z, Vít F (1996) Advanced electrophysiological diagnostics of hepatic andportosystemic encephalopathy. Acta Medica (Hradec Králocé) 39:21–26 Kuba M, Kremláček J, Hulek P, Kubová Z, Vít F (1996) Advanced electrophysiological diagnostics of hepatic andportosystemic encephalopathy. Acta Medica (Hradec Králocé) 39:21–26
214.
go back to reference Arakawa K, Tobimatsu S, Kato M, Kira J (1999) Parvocellular and magnocellular visual processing in spinocerebellar degeneration and Parkinson’s disease: an event-related potential study. Clin Neurophysiol 110:1048–1057PubMed Arakawa K, Tobimatsu S, Kato M, Kira J (1999) Parvocellular and magnocellular visual processing in spinocerebellar degeneration and Parkinson’s disease: an event-related potential study. Clin Neurophysiol 110:1048–1057PubMed
215.
go back to reference Nakamura M, Kaneoke Y, Watanabe K, Kakigi R (2002) Visual information process in williams syndrome: intact motion detection accompanied by typical visuospatial dysfunctions. Eur J Neurosci 16:1810–1818PubMed Nakamura M, Kaneoke Y, Watanabe K, Kakigi R (2002) Visual information process in williams syndrome: intact motion detection accompanied by typical visuospatial dysfunctions. Eur J Neurosci 16:1810–1818PubMed
216.
go back to reference Kubová Z, Szanyi J, Langrová J, Kremláček J, Kuba M, Honegr K (2006) Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis. J Clin Neurophysiol 23:416–420PubMed Kubová Z, Szanyi J, Langrová J, Kremláček J, Kuba M, Honegr K (2006) Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis. J Clin Neurophysiol 23:416–420PubMed
217.
go back to reference Smith AM, Majaj NJ, Movshon JA (2005) Dynamics of motion signalling by neurons in macaque area MT. Nat Neurosci 8:220–228PubMed Smith AM, Majaj NJ, Movshon JA (2005) Dynamics of motion signalling by neurons in macaque area MT. Nat Neurosci 8:220–228PubMed
Metadata
Title
A primer on motion visual evoked potentials
Author
Sven P. Heinrich
Publication date
01-03-2007
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 2/2007
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-006-9043-8

Other articles of this Issue 2/2007

Documenta Ophthalmologica 2/2007 Go to the issue