Skip to main content
Top
Published in: Clinical Pharmacokinetics 3/2018

Open Access 01-03-2018 | Original Research Article

A Population Pharmacokinetic and Pharmacodynamic Analysis of Abemaciclib in a Phase I Clinical Trial in Cancer Patients

Authors: Sonya C. Tate, Amanda K. Sykes, Palaniappan Kulanthaivel, Edward M. Chan, P. Kellie Turner, Damien M. Cronier

Published in: Clinical Pharmacokinetics | Issue 3/2018

Login to get access

Abstract

Background and Objectives

Abemaciclib, a dual inhibitor of cyclin-dependent kinases 4 and 6, has demonstrated clinical activity in a number of different cancer types. The objectives of this study were to characterize the pharmacokinetics of abemaciclib in cancer patients using population pharmacokinetic (popPK) modeling, and to evaluate target engagement at clinically relevant dose levels.

Methods

A phase I study was conducted in cancer patients which incorporated intensive pharmacokinetic sampling after single and multiple oral doses of abemaciclib. Data were analyzed by popPK modeling, and patient demographics contributing to pharmacokinetic variability were explored. Target engagement was evaluated by combining the clinical popPK model with a previously developed pre-clinical pharmacokinetic/pharmacodynamic model.

Results

The pharmacokinetic analysis incorporated 4012 plasma concentrations from 224 patients treated with abemaciclib at doses ranging from 50 to 225 mg every 24 h and 75 to 275 mg every 12 h. A linear one-compartment model with time- and dose-dependent relative bioavailability (F rel) adequately described the pharmacokinetics of abemaciclib. Serum albumin and alkaline phosphatase were the only significant covariates identified in the model, the inclusion of which reduced inter-individual variability in F rel by 10.3 percentage points. By combining the clinical popPK model with the previously developed pre-clinical pharmacokinetic/pharmacodynamic model, the extent of target engagement in skin in cancer patients was successfully predicted.

Conclusion

The proportion of abemaciclib pharmacokinetic variability that can be attributed to patient demographics is negligible, and as such there are currently no dose adjustments recommended for adult patients of different sex, age, or body weight.

Trial registration

NCT01394016 (ClinicalTrials.gov).
Appendix
Available only for authorised users
Literature
1.
go back to reference Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–69.CrossRefPubMed Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–69.CrossRefPubMed
2.
go back to reference Knudsen KE, Weber E, Arden KC, Cavenee WK, Feramisco JR, Knudsen ES. The retinoblastoma tumor suppressor inhibits cellular proliferation through two distinct mechanisms: inhibition of cell cycle progression and induction of cell death. Oncogene. 1999;18(37):5239–45. doi:10.1038/sj.onc.1202910.CrossRefPubMed Knudsen KE, Weber E, Arden KC, Cavenee WK, Feramisco JR, Knudsen ES. The retinoblastoma tumor suppressor inhibits cellular proliferation through two distinct mechanisms: inhibition of cell cycle progression and induction of cell death. Oncogene. 1999;18(37):5239–45. doi:10.​1038/​sj.​onc.​1202910.CrossRefPubMed
5.
go back to reference Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs. 2014;32(5):825–37. doi:10.1007/s10637-014-0120-7.CrossRef Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs. 2014;32(5):825–37. doi:10.​1007/​s10637-014-0120-7.CrossRef
6.
go back to reference Yadav V, Burke TF, Huber L, Van Horn RD, Zhang Y, Buchanan SG, et al. The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation. Mol Cancer Ther. 2014;13(10):2253–63. doi:10.1158/1535-7163.MCT-14-0257.CrossRefPubMed Yadav V, Burke TF, Huber L, Van Horn RD, Zhang Y, Buchanan SG, et al. The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation. Mol Cancer Ther. 2014;13(10):2253–63. doi:10.​1158/​1535-7163.​MCT-14-0257.CrossRefPubMed
7.
go back to reference Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos. 2015;43(9):1360–71. doi:10.1124/dmd.114.062745.CrossRefPubMed Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos. 2015;43(9):1360–71. doi:10.​1124/​dmd.​114.​062745.CrossRefPubMed
8.
go back to reference Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53. doi:10.1158/2159-8290.CD-16-0095.CrossRefPubMed Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53. doi:10.​1158/​2159-8290.​CD-16-0095.CrossRefPubMed
9.
go back to reference Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res. 2014;20(14):3763–74. doi:10.1158/1078-0432.CCR-13-2846.CrossRefPubMed Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res. 2014;20(14):3763–74. doi:10.​1158/​1078-0432.​CCR-13-2846.CrossRefPubMed
11.
go back to reference Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometr Syst Pharmacol. 2013;2:e38. doi:10.1038/psp.2013.14.CrossRef Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometr Syst Pharmacol. 2013;2:e38. doi:10.​1038/​psp.​2013.​14.CrossRef
12.
go back to reference Kulanthaivel P, Mahadevan D, Turner PK, Royalty J, Ng WT, Yi P, et al. Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors [abstract no. CT153]. In: AACR annual meeting, 16–20 April 2016, New Orleans. Kulanthaivel P, Mahadevan D, Turner PK, Royalty J, Ng WT, Yi P, et al. Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors [abstract no. CT153]. In: AACR annual meeting, 16–20 April 2016, New Orleans.
13.
go back to reference Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMed Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMed
14.
go back to reference Burke T, Torres R, McNulty A, Dempsey J, Kolis S, Kulanthaivel P, et al. The major human metabolites of abemaciclib are inhibitors of CDK4 and CDK6 [abstract no. 2830]. In: AACR annual meeting, 16–20 April 2016, New Orleans. Burke T, Torres R, McNulty A, Dempsey J, Kolis S, Kulanthaivel P, et al. The major human metabolites of abemaciclib are inhibitors of CDK4 and CDK6 [abstract no. 2830]. In: AACR annual meeting, 16–20 April 2016, New Orleans.
15.
go back to reference Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.CrossRefPubMed Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.CrossRefPubMed
17.
go back to reference Turner PK, Chappell J, Kulanthaivel P, Ng WT, Royalty J. Food effect on the pharmacokinetics of 200-mg abemaciclib in healthy subject [abstract no. CT152]. In: AACR annual meeting, 16–20 April 2016, New Orleans. Turner PK, Chappell J, Kulanthaivel P, Ng WT, Royalty J. Food effect on the pharmacokinetics of 200-mg abemaciclib in healthy subject [abstract no. CT152]. In: AACR annual meeting, 16–20 April 2016, New Orleans.
18.
go back to reference Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet. 2009;24(1):16–24.CrossRefPubMedPubMedCentral Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet. 2009;24(1):16–24.CrossRefPubMedPubMedCentral
Metadata
Title
A Population Pharmacokinetic and Pharmacodynamic Analysis of Abemaciclib in a Phase I Clinical Trial in Cancer Patients
Authors
Sonya C. Tate
Amanda K. Sykes
Palaniappan Kulanthaivel
Edward M. Chan
P. Kellie Turner
Damien M. Cronier
Publication date
01-03-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 3/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0559-8

Other articles of this Issue 3/2018

Clinical Pharmacokinetics 3/2018 Go to the issue