Skip to main content
Top
Published in: Investigational New Drugs 6/2013

01-12-2013 | PHASE I STUDIES

A phase I study of vorinostat in combination with bortezomib in patients with advanced malignancies

Authors: William R. Schelman, Anne M. Traynor, Kyle D. Holen, Jill M. Kolesar, Steven Attia, Tien Hoang, Jens Eickhoff, Zhisheng Jiang, Dona Alberti, Rebecca Marnocha, Joel M. Reid, Matthew M. Ames, Renee M. McGovern, Igor Espinoza-Delgado, John J. Wright, George Wilding, Howard H. Bailey

Published in: Investigational New Drugs | Issue 6/2013

Login to get access

Summary

Background A phase I study to assess the maximum-tolerated dose (MTD), dose-limiting toxicity (DLT), pharmacokinetics (PK) and antitumor activity of vorinostat in combination with bortezomib in patients with advanced solid tumors. Methods Patients received vorinostat orally once daily on days 1–14 and bortezomib intravenously on days 1, 4, 8 and 11 of a 21-day cycle. Starting dose (level 1) was vorinostat (400 mg) and bortezomib (0.7 mg/m2). Bortezomib dosing was increased using a standard phase I dose-escalation schema. PKs were evaluated during cycle 1. Results Twenty-three patients received 57 cycles of treatment on four dose levels ranging from bortezomib 0.7 mg/m2 to 1.5 mg/m2. The MTD was established at vorinostat 400 mg daily and bortezomib 1.3 mg/m2. DLTs consisted of grade 3 fatigue in three patients (1 mg/m2,1.3 mg/m2 and 1.5 mg/m2) and grade 3 hyponatremia in one patient (1.5 mg/m2). The most common grade 1/2 toxicities included nausea (60.9 %), fatigue (34.8 %), diaphoresis (34.8 %), anorexia (30.4 %) and constipation (26.1 %). Objective partial responses were observed in one patient with NSCLC and in one patient with treatment-refractory soft tissue sarcoma. Bortezomib did not affect the PKs of vorinostat; however, the Cmax and AUC of the acid metabolite were significantly increased on day 2 compared with day 1. Conclusions This combination was generally well-tolerated at doses that achieved clinical benefit. The MTD was established at vorinostat 400 mg daily × 14 days and bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 of a 21-day cycle.
Literature
1.
go back to reference Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579CrossRefPubMed Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579CrossRefPubMed
2.
go back to reference Arts J, de Schepper S, Van Emelen K (2003) Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem 10:2343–2350CrossRefPubMed Arts J, de Schepper S, Van Emelen K (2003) Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem 10:2343–2350CrossRefPubMed
3.
go back to reference Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRefPubMed Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRefPubMed
4.
go back to reference Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 115:287–297CrossRefPubMed Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 115:287–297CrossRefPubMed
5.
go back to reference Mitsiades N, Mitsiades CS, Richardson PG et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101:4055–4062CrossRefPubMed Mitsiades N, Mitsiades CS, Richardson PG et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101:4055–4062CrossRefPubMed
6.
go back to reference Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 101:540–545PubMedCentralCrossRefPubMed Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 101:540–545PubMedCentralCrossRefPubMed
7.
go back to reference Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101:3236–3239CrossRefPubMed Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101:3236–3239CrossRefPubMed
8.
go back to reference Xu Y, Voelter-Mahlknecht S, Mahlknecht U (2005) The histone deacetylase inhibitor suberoylanilide hydroxamic acid down-regulates expression levels of Bcr-abl, c-Myc and HDAC3 in chronic myeloid leukemia cell lines. Int J Mol Med 15:169–172PubMed Xu Y, Voelter-Mahlknecht S, Mahlknecht U (2005) The histone deacetylase inhibitor suberoylanilide hydroxamic acid down-regulates expression levels of Bcr-abl, c-Myc and HDAC3 in chronic myeloid leukemia cell lines. Int J Mol Med 15:169–172PubMed
9.
go back to reference Yu C, Rahmani M, Almenara J et al (2003) Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 63:2118–2126PubMed Yu C, Rahmani M, Almenara J et al (2003) Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 63:2118–2126PubMed
10.
go back to reference Mitsiades CS, Mitsiades N, Richardson PG, Treon SP, Anderson KC (2003) Novel biologically based therapies for Waldenstrom’s macroglobulinemia. Semin Oncol 30:309–312CrossRefPubMed Mitsiades CS, Mitsiades N, Richardson PG, Treon SP, Anderson KC (2003) Novel biologically based therapies for Waldenstrom’s macroglobulinemia. Semin Oncol 30:309–312CrossRefPubMed
11.
go back to reference Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052CrossRefPubMed Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052CrossRefPubMed
12.
go back to reference Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019PubMedCentralCrossRefPubMed Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019PubMedCentralCrossRefPubMed
13.
go back to reference Huang L, Pardee AB (2000) Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6:849–866PubMedCentralPubMed Huang L, Pardee AB (2000) Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6:849–866PubMedCentralPubMed
14.
go back to reference Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497PubMed Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497PubMed
15.
go back to reference Butler LM, Agus DB, Scher HI et al (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170PubMed Butler LM, Agus DB, Scher HI et al (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170PubMed
16.
go back to reference Gillenwater AM, Zhong M, Lotan R (2007) Histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis through both mitochondrial and Fas (Cd95) signaling in head and neck squamous carcinoma cells. Mol Cancer Ther 6:2967–2975CrossRefPubMed Gillenwater AM, Zhong M, Lotan R (2007) Histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis through both mitochondrial and Fas (Cd95) signaling in head and neck squamous carcinoma cells. Mol Cancer Ther 6:2967–2975CrossRefPubMed
17.
go back to reference Peart MJ, Tainton KM, Ruefli AA et al (2003) Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63:4460–4471PubMed Peart MJ, Tainton KM, Ruefli AA et al (2003) Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63:4460–4471PubMed
19.
go back to reference Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639CrossRefPubMed Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639CrossRefPubMed
20.
go back to reference Nawrocki ST, Carew JS, Pino MS et al (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781CrossRefPubMed Nawrocki ST, Carew JS, Pino MS et al (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781CrossRefPubMed
21.
go back to reference Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396CrossRefPubMed Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396CrossRefPubMed
22.
23.
go back to reference Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:s4647–s4651CrossRefPubMed Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:s4647–s4651CrossRefPubMed
24.
go back to reference Kondagunta GV, Drucker B, Schwartz L et al (2004) Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 22:3720–3725CrossRefPubMed Kondagunta GV, Drucker B, Schwartz L et al (2004) Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 22:3720–3725CrossRefPubMed
25.
go back to reference Giuliano M, Lauricella M, Calvaruso G et al (1999) The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 59:5586–5595PubMed Giuliano M, Lauricella M, Calvaruso G et al (1999) The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 59:5586–5595PubMed
26.
go back to reference Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102:3765–3774CrossRefPubMed Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102:3765–3774CrossRefPubMed
27.
go back to reference Shah JJ, Orlowski RZ (2009) Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23(11):1964–1979 Shah JJ, Orlowski RZ (2009) Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23(11):1964–1979
29.
go back to reference Emanuele S, Lauricella M, Carlisi D et al (2007) SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 12:1327–1338CrossRefPubMed Emanuele S, Lauricella M, Carlisi D et al (2007) SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 12:1327–1338CrossRefPubMed
30.
go back to reference Carew JS, Medina EC, Esquivel JA 2nd et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14(10):2448–2459 Carew JS, Medina EC, Esquivel JA 2nd et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14(10):2448–2459
31.
go back to reference Place RF, Noonan EJ, Giardina C (2005) HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 70:394–406CrossRefPubMed Place RF, Noonan EJ, Giardina C (2005) HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 70:394–406CrossRefPubMed
32.
go back to reference Parise RA, Holleran JL, Beumer JH, Ramalingam S, Egoran MJ (2006) A liquid chromatography-electrospray ionization tandem mass spectrometric assay for quantitation of the histone deacetylase inhibitor, vorinostat (suberoylanilide hydroxamicacid, SAHA) and its metabolites in human serum. J Chromatogr B Anal Technol Biomed Life Sci 840(2):108–115CrossRef Parise RA, Holleran JL, Beumer JH, Ramalingam S, Egoran MJ (2006) A liquid chromatography-electrospray ionization tandem mass spectrometric assay for quantitation of the histone deacetylase inhibitor, vorinostat (suberoylanilide hydroxamicacid, SAHA) and its metabolites in human serum. J Chromatogr B Anal Technol Biomed Life Sci 840(2):108–115CrossRef
34.
go back to reference Tsukamoto S, Yokosawa H (2009) Targeting the proteasome pathway. Expert Opin Ther Targets 13:605–621CrossRefPubMed Tsukamoto S, Yokosawa H (2009) Targeting the proteasome pathway. Expert Opin Ther Targets 13:605–621CrossRefPubMed
35.
go back to reference Maki RG, Kraft AS, Scheu K et al (2005) A multicenter Phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer 103:1431–1438CrossRefPubMed Maki RG, Kraft AS, Scheu K et al (2005) A multicenter Phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer 103:1431–1438CrossRefPubMed
36.
go back to reference Traynor AM, Dubey S, Eickhoff JC et al (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 4:522–526PubMedCentralCrossRefPubMed Traynor AM, Dubey S, Eickhoff JC et al (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 4:522–526PubMedCentralCrossRefPubMed
37.
go back to reference Ramalingam SS, Parise RA, Ramanathan RK et al (2007) Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res 13:3605–3610CrossRefPubMed Ramalingam SS, Parise RA, Ramanathan RK et al (2007) Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res 13:3605–3610CrossRefPubMed
Metadata
Title
A phase I study of vorinostat in combination with bortezomib in patients with advanced malignancies
Authors
William R. Schelman
Anne M. Traynor
Kyle D. Holen
Jill M. Kolesar
Steven Attia
Tien Hoang
Jens Eickhoff
Zhisheng Jiang
Dona Alberti
Rebecca Marnocha
Joel M. Reid
Matthew M. Ames
Renee M. McGovern
Igor Espinoza-Delgado
John J. Wright
George Wilding
Howard H. Bailey
Publication date
01-12-2013
Publisher
Springer US
Published in
Investigational New Drugs / Issue 6/2013
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-013-0029-6

Other articles of this Issue 6/2013

Investigational New Drugs 6/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine