Skip to main content
Top
Published in: Surgical Endoscopy 1/2017

01-01-2017 | New Technology

A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns

Authors: Rachel Berry, Niranchan Paskaranandavadivel, Peng Du, Mark L. Trew, Gregory O’Grady, John A. Windsor, Leo K. Cheng

Published in: Surgical Endoscopy | Issue 1/2017

Login to get access

Abstract

Background

Gastric slow waves regulate peristalsis, and gastric dysrhythmias have been implicated in functional motility disorders. To accurately define slow wave patterns, it is currently necessary to collect high-resolution serosal recordings during open surgery. We therefore developed a novel gastric slow wave mapping device for use during laparoscopic procedures.

Methods

The device consists of a retractable catheter constructed of a flexible nitinol core coated with Pebax. Once deployed through a 5-mm laparoscopic port, the spiral head is revealed with 32 electrodes at 5 mm intervals. Recordings were validated against a reference electrode array in pigs and tested in a human patient.

Results

Recordings from the device and a reference array in pigs were identical in frequency (2.6 cycles per minute; p = 0.91), and activation patterns and velocities were consistent (8.9 ± 0.2 vs 8.7 ± 0.1 mm s−1; p = 0.2). Device and reference amplitudes were comparable (1.3 ± 0.1 vs 1.4 ± 0.1 mV; p = 0.4), though the device signal-to-noise ratio was higher (17.5 ± 0.6 vs 12.8 ± 0.6 dB; P < 0.0001). In the human patient, corpus slow waves were recorded and mapped (frequency 2.7 ± 0.03 cycles per minute, amplitude 0.8 ± 0.4 mV, velocity 2.3 ± 0.9 mm s−1).

Conclusion

In conclusion, the novel laparoscopic device achieves high-quality serosal slow wave recordings. It can be used for laparoscopic diagnostic studies to document slow wave patterns in patients with gastric motility disorders.
Literature
1.
go back to reference Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20:54–63CrossRefPubMed Farrugia G (2008) Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 20:54–63CrossRefPubMed
2.
go back to reference O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) The origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299:G585–G592CrossRefPubMedPubMedCentral O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) The origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299:G585–G592CrossRefPubMedPubMedCentral
3.
go back to reference Hinder RA, Kelly KA (1977) Human gastric pacesetter potential—site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133:29–33CrossRefPubMed Hinder RA, Kelly KA (1977) Human gastric pacesetter potential—site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 133:29–33CrossRefPubMed
4.
go back to reference Lin X, Chen JZ (2001) Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am J Physiol Gastrointest Liver Physiol 280:G1370–G1375PubMed Lin X, Chen JZ (2001) Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am J Physiol Gastrointest Liver Physiol 280:G1370–G1375PubMed
5.
go back to reference Chen JD, Schirmer BD, McCallum RW (1994) Serosal and cutaneous recordings of gastric myoelectrical activity in patients with gastroparesis. Am J Physiol 266:G90–G98PubMed Chen JD, Schirmer BD, McCallum RW (1994) Serosal and cutaneous recordings of gastric myoelectrical activity in patients with gastroparesis. Am J Physiol 266:G90–G98PubMed
6.
go back to reference Hocking MP, Harrison WD, Sninsky CA (1990) Gastric dysrhythmias following pylorus-preserving pancreaticoduodenectomy. Dig Dis Sci 35:1226–1230CrossRefPubMed Hocking MP, Harrison WD, Sninsky CA (1990) Gastric dysrhythmias following pylorus-preserving pancreaticoduodenectomy. Dig Dis Sci 35:1226–1230CrossRefPubMed
7.
go back to reference O’Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK (2014) Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 41:854–862CrossRefPubMedPubMedCentral O’Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK (2014) Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 41:854–862CrossRefPubMedPubMedCentral
8.
go back to reference Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterol 135:1601–1611CrossRef Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ (2008) Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterol 135:1601–1611CrossRef
9.
go back to reference O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterol 143(589–598):e583 O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK (2012) Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterol 143(589–598):e583
10.
go back to reference O’Grady G, Egbuji JU, Du P, Lammers WJEP, Cheng LK, Windsor JA, Pullan AJ (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23:e345–e355CrossRefPubMedPubMedCentral O’Grady G, Egbuji JU, Du P, Lammers WJEP, Cheng LK, Windsor JA, Pullan AJ (2011) High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 23:e345–e355CrossRefPubMedPubMedCentral
12.
go back to reference Cheng LK, Du P, O’Grady G (2013) Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda) 28:310–317 Cheng LK, Du P, O’Grady G (2013) Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda) 28:310–317
13.
go back to reference Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Nielsen P, Windsor JA, Pullan AJ, Cheng LK (2009) High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37:839–846CrossRefPubMedPubMedCentral Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Nielsen P, Windsor JA, Pullan AJ, Cheng LK (2009) High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng 37:839–846CrossRefPubMedPubMedCentral
14.
go back to reference Lammers W, Ver Donck L, Stephen B, Smets D, Schuurkes J (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296:1200–1210CrossRef Lammers W, Ver Donck L, Stephen B, Smets D, Schuurkes J (2009) Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol Gastrointest Liver Physiol 296:1200–1210CrossRef
15.
go back to reference O’Grady G, Du P, Egbuji JU, Lammers WJEP, Wahab A, Pullan AJ, Cheng LK, Windsor JA (2009) A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg Endosc 23:2842–2848CrossRefPubMedPubMedCentral O’Grady G, Du P, Egbuji JU, Lammers WJEP, Wahab A, Pullan AJ, Cheng LK, Windsor JA (2009) A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg Endosc 23:2842–2848CrossRefPubMedPubMedCentral
16.
go back to reference Familoni BO, Abell T, Voeller G (1994) Measurement of gastric and small bowel electrical activity at laparoscopy. J Laparoendosc Surg 4:325–332CrossRefPubMed Familoni BO, Abell T, Voeller G (1994) Measurement of gastric and small bowel electrical activity at laparoscopy. J Laparoendosc Surg 4:325–332CrossRefPubMed
17.
go back to reference Thierry B, Tabrizian M, Trepanier C, Savadogo O, Yahia LH (2000) Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. J Biomed Mater Res 51:685–693CrossRefPubMed Thierry B, Tabrizian M, Trepanier C, Savadogo O, Yahia LH (2000) Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. J Biomed Mater Res 51:685–693CrossRefPubMed
18.
go back to reference Feldman LA, Hui H (1997) Compatibility of medical devices and materials with low-temperature H2O2 gas plasma. Med Device Diagn Ind 19:63–77 Feldman LA, Hui H (1997) Compatibility of medical devices and materials with low-temperature H2O2 gas plasma. Med Device Diagn Ind 19:63–77
19.
go back to reference Eldar M, Ohad DG, Goldberger JJ, Rotstein Z, Hsu S, Swanson DK, Greenspon AJ (1997) Transcutaneous multielectrode basket catheter for endocardial mapping and ablation of ventricular tachycardia in the pig. Circulation 96:2430–2437CrossRefPubMed Eldar M, Ohad DG, Goldberger JJ, Rotstein Z, Hsu S, Swanson DK, Greenspon AJ (1997) Transcutaneous multielectrode basket catheter for endocardial mapping and ablation of ventricular tachycardia in the pig. Circulation 96:2430–2437CrossRefPubMed
20.
go back to reference Schmitt C, Zrenner B, Schneider M, Karch M, Ndrepepa G, Deisenhofer I, Weyerbrock S, Schreieck J, Schömig A (1999) Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias. Circulation 99:2414–2422CrossRefPubMed Schmitt C, Zrenner B, Schneider M, Karch M, Ndrepepa G, Deisenhofer I, Weyerbrock S, Schreieck J, Schömig A (1999) Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias. Circulation 99:2414–2422CrossRefPubMed
21.
22.
go back to reference Cote KR, Gill RC (1987) Development of a platinized platinum/iridium electrode for use in vitro. Ann Biomed Eng 15:419–426CrossRefPubMed Cote KR, Gill RC (1987) Development of a platinized platinum/iridium electrode for use in vitro. Ann Biomed Eng 15:419–426CrossRefPubMed
23.
go back to reference O’Grady G, Angeli T, Lammers WJ (2013) The principles and practice of gastrointestinal high-resolution mapping. In: Cheng LK, Farrugia G, Pullan AJ (eds) New advances in gastrointestinal motility research. Springer, New York, pp 51–69CrossRef O’Grady G, Angeli T, Lammers WJ (2013) The principles and practice of gastrointestinal high-resolution mapping. In: Cheng LK, Farrugia G, Pullan AJ (eds) New advances in gastrointestinal motility research. Springer, New York, pp 51–69CrossRef
24.
go back to reference Egbuji J, O’Grady G, Du P (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22:e292–e300CrossRefPubMedPubMedCentral Egbuji J, O’Grady G, Du P (2010) Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol Motil 22:e292–e300CrossRefPubMedPubMedCentral
25.
go back to reference Angeli TR, Cheng LK, Du P (2015) Loss of interstitial cells of Cajal and patterns of gastric dysrhythmia in chronic unexplained nausea and vomiting (CUNV). Gastroenterology 149:56–66CrossRefPubMedPubMedCentral Angeli TR, Cheng LK, Du P (2015) Loss of interstitial cells of Cajal and patterns of gastric dysrhythmia in chronic unexplained nausea and vomiting (CUNV). Gastroenterology 149:56–66CrossRefPubMedPubMedCentral
26.
go back to reference Ladabaum U, Koshy SS, Woods ML, Hooper FG, Owyang C, Hasler WL (1998) Differential symptomatic and electrogastrographic effects of distal and proximal human gastric distension. Am J Physiol 275:G418–G424PubMed Ladabaum U, Koshy SS, Woods ML, Hooper FG, Owyang C, Hasler WL (1998) Differential symptomatic and electrogastrographic effects of distal and proximal human gastric distension. Am J Physiol 275:G418–G424PubMed
27.
go back to reference O’Grady G, Paskaranandavadivel N, Angeli TR, Du P, Windsor JA, Cheng LK, Pullan AJ (2011) A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiol Meas 32:N13–N22CrossRefPubMedPubMedCentral O’Grady G, Paskaranandavadivel N, Angeli TR, Du P, Windsor JA, Cheng LK, Pullan AJ (2011) A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiol Meas 32:N13–N22CrossRefPubMedPubMedCentral
28.
go back to reference Yassi R, O’Grady G, Paskaranandavadivel N, Du P, Angeli T, Pullan A, Cheng L, Erickson J (2012) The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol 12:60CrossRefPubMedPubMedCentral Yassi R, O’Grady G, Paskaranandavadivel N, Du P, Angeli T, Pullan A, Cheng L, Erickson J (2012) The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol 12:60CrossRefPubMedPubMedCentral
29.
go back to reference Paskaranandavadivel N, O’Grady G, Du P, Cheng LK (2013) Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol Motil 25:79–83CrossRefPubMed Paskaranandavadivel N, O’Grady G, Du P, Cheng LK (2013) Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol Motil 25:79–83CrossRefPubMed
30.
go back to reference Erickson J, O’Grady G, Du P (2010) Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in serosal high-resolution electrical recordings. Ann Biomed Eng 38:1511–1529CrossRefPubMed Erickson J, O’Grady G, Du P (2010) Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in serosal high-resolution electrical recordings. Ann Biomed Eng 38:1511–1529CrossRefPubMed
31.
go back to reference Erickson J, O’Grady G, Du P, Egbuji J, Pullan A, Cheng L (2011) Automated cycle partitioning and visualization of high-resolution activation time maps of gastric slow wave recordings: the Region Growing Using Polynomial Surface-estimate stabilization (REGROUPS) Algorithm. Ann Biomed Eng 39:469–483CrossRefPubMed Erickson J, O’Grady G, Du P, Egbuji J, Pullan A, Cheng L (2011) Automated cycle partitioning and visualization of high-resolution activation time maps of gastric slow wave recordings: the Region Growing Using Polynomial Surface-estimate stabilization (REGROUPS) Algorithm. Ann Biomed Eng 39:469–483CrossRefPubMed
32.
go back to reference Weeks M (2010) Digital signal processing using matlab and wavelets, 2nd edn. Jones and Bartlett Publishers, London Weeks M (2010) Digital signal processing using matlab and wavelets, 2nd edn. Jones and Bartlett Publishers, London
33.
go back to reference Paskaranandavadivel N, Cheng L, Du P, O’Grady G, Pullan A (2011) Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. In: Conference of IEEE Eng Med Biol Soc:1737–1740 Paskaranandavadivel N, Cheng L, Du P, O’Grady G, Pullan A (2011) Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. In: Conference of IEEE Eng Med Biol Soc:1737–1740
34.
go back to reference Paskaranandavadivel N, O’Grady G, Du P, Pullan A, Cheng L (2012) An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE Trans Biomed Eng 59:882–889CrossRefPubMed Paskaranandavadivel N, O’Grady G, Du P, Pullan A, Cheng L (2012) An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE Trans Biomed Eng 59:882–889CrossRefPubMed
35.
go back to reference Bayly P, KenKnight BH, Rogers J, Hillsley RE, Ideker R, Smith W (1998) Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans Biomed Eng 45:563–571CrossRefPubMed Bayly P, KenKnight BH, Rogers J, Hillsley RE, Ideker R, Smith W (1998) Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans Biomed Eng 45:563–571CrossRefPubMed
36.
go back to reference Du P, Wenlian Q, O’Grady G, Egbuji JU, Lammers W, Cheng LK, Pullan AJ (2009) Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping. In: Conference of IEEE Eng Med Biol Soc:2527–2530 Du P, Wenlian Q, O’Grady G, Egbuji JU, Lammers W, Cheng LK, Pullan AJ (2009) Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping. In: Conference of IEEE Eng Med Biol Soc:2527–2530
37.
go back to reference Angeli T, Du P, Paskaranandavadivel N, Janssen PW, Beyder A, Lentle RG, Bissett IP, Bissett Ian P, Cheng LK, O’Grady G (2013) The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J Physiol 591:4567–4579CrossRefPubMedPubMedCentral Angeli T, Du P, Paskaranandavadivel N, Janssen PW, Beyder A, Lentle RG, Bissett IP, Bissett Ian P, Cheng LK, O’Grady G (2013) The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J Physiol 591:4567–4579CrossRefPubMedPubMedCentral
38.
go back to reference Miedema BW, Sarr MG, Kelly KA (1992) Pacing the human stomach. Surgery 111:143–150PubMed Miedema BW, Sarr MG, Kelly KA (1992) Pacing the human stomach. Surgery 111:143–150PubMed
39.
go back to reference O’Grady G, Du P, Lammers WJ, Egbuji JU, Mithraratne P, Chen JD, Cheng LK, Windsor JA, Pullan AJ (2010) High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am J Physiol Gastrointest Liver Physiol 298:G314–G321CrossRefPubMed O’Grady G, Du P, Lammers WJ, Egbuji JU, Mithraratne P, Chen JD, Cheng LK, Windsor JA, Pullan AJ (2010) High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am J Physiol Gastrointest Liver Physiol 298:G314–G321CrossRefPubMed
40.
go back to reference Du P, Hameed A, Angeli TR, Lahr C, Abell TL, Cheng LK, O’Grady G (2015) The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol Motil 27:1409–1422CrossRefPubMedPubMedCentral Du P, Hameed A, Angeli TR, Lahr C, Abell TL, Cheng LK, O’Grady G (2015) The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol Motil 27:1409–1422CrossRefPubMedPubMedCentral
41.
go back to reference Lerouge S, Tabrizian M, Wertheimer MR, Marchand R, Yahia LH (2002) Safety of plasma-based sterilization: surface modifications of polymeric medical devices induced by Sterrad and Plazlyte™ processes. Biomed Mater Eng 12:3–13PubMed Lerouge S, Tabrizian M, Wertheimer MR, Marchand R, Yahia LH (2002) Safety of plasma-based sterilization: surface modifications of polymeric medical devices induced by Sterrad and Plazlyte™ processes. Biomed Mater Eng 12:3–13PubMed
42.
go back to reference Yin J, Chen JDZ (2013) Electrogastrography: methodology, validation and applications. Neurogastroenterol Motil 19:5–17CrossRef Yin J, Chen JDZ (2013) Electrogastrography: methodology, validation and applications. Neurogastroenterol Motil 19:5–17CrossRef
43.
go back to reference Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer RL, Richards WO (2006) Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol Motil 18:619–631CrossRefPubMed Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer RL, Richards WO (2006) Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol Motil 18:619–631CrossRefPubMed
44.
45.
go back to reference Paskaranandavadivel N, Wang R, Sathar S, O’Grady G, Cheng LK, Farajidavar A (2015) Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation. Neurogastroenterol Motil 27:580–585CrossRefPubMedPubMedCentral Paskaranandavadivel N, Wang R, Sathar S, O’Grady G, Cheng LK, Farajidavar A (2015) Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation. Neurogastroenterol Motil 27:580–585CrossRefPubMedPubMedCentral
46.
go back to reference Ver Donck L, Lammers WJEP, Moreaux B, Smets D, Voeten J, Vekemans J, Schuurkes JAJ, Coulie B (2006) Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med Biol Eng Comput 44:170–178CrossRefPubMed Ver Donck L, Lammers WJEP, Moreaux B, Smets D, Voeten J, Vekemans J, Schuurkes JAJ, Coulie B (2006) Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med Biol Eng Comput 44:170–178CrossRefPubMed
Metadata
Title
A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns
Authors
Rachel Berry
Niranchan Paskaranandavadivel
Peng Du
Mark L. Trew
Gregory O’Grady
John A. Windsor
Leo K. Cheng
Publication date
01-01-2017
Publisher
Springer US
Published in
Surgical Endoscopy / Issue 1/2017
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-016-4936-4

Other articles of this Issue 1/2017

Surgical Endoscopy 1/2017 Go to the issue