Skip to main content
Top
Published in: Archives of Virology 9/2012

01-09-2012 | Original Article

A novel miRNA produced during lytic HSV-1 infection is important for efficient replication in tissue culture

Authors: Daniel J. Munson, April D. Burch

Published in: Archives of Virology | Issue 9/2012

Login to get access

Abstract

The influence of miRNAs on the host-pathogen environment is largely unknown and under intensive investigation. Whether produced by the pathogen or by the host cell, these miRNAs will sculpt the intracellular landscape, as their activity will ultimately affect levels of target proteins. Using a high-throughput sequencing approach, we identified 19 novel small RNAs produced during the early hours of herpes simplex virus type 1 (HSV-1) infection in epithelial cells. Six of the novel RNAs had predicted folds characteristic of miRNAs. One of the six, miR-92944, which resides in the 5′ UTR of the ul42 gene in the sense orientation, was confirmed as a bona fide miRNA by RT-PCR and stem-loop PCR analysis. Northern blot analysis was used to observe the precursor forms of miR-92944. Viral mutants that do not produce miR-92944 exhibited significant reductions in viral titers in both single and multi-step growth analysis and a fourfold reduction in plaque size. The miR-92944 mutants produce wild-type levels of ICP4, UL42, VP5, and gC proteins contain no additional changes in the DNA sequence surrounding the site of mutagenesis. The defective phenotype of miR-92944 mutants was complemented in V42.3 cells, which contain the 5′UTR of ul42. We also found that miR-H1 expression was diminished in cells infected with the miR-92944 mutant virus. This study provides new information on the miRNA landscape during the early stages of HSV-1 infection and reveals novel targets for antagonistic molecules that may curtail the establishment of lytic or latent virus infection.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMedCrossRef Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMedCrossRef
4.
go back to reference Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRef Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRef
5.
go back to reference Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042):682–686. doi:10.1038/nature03576 PubMedCrossRef Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042):682–686. doi:10.​1038/​nature03576 PubMedCrossRef
6.
go back to reference Omoto S, Fujii YR (2005) Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 86:751–755PubMedCrossRef Omoto S, Fujii YR (2005) Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 86:751–755PubMedCrossRef
9.
go back to reference Roizman B, Knipe DM (2001) Herpes simplex viruses and their replication. In: Knipe DM, Howley PM, Griffin DE et al (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2399–2459 Roizman B, Knipe DM (2001) Herpes simplex viruses and their replication. In: Knipe DM, Howley PM, Griffin DE et al (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2399–2459
10.
go back to reference Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Nat Acad Sci USA 102(15):5570–5575PubMedCrossRef Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Nat Acad Sci USA 102(15):5570–5575PubMedCrossRef
11.
go back to reference Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J (2005) Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79(18):12095–12099PubMedCrossRef Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J (2005) Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79(18):12095–12099PubMedCrossRef
12.
go back to reference Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang X-J, Coen DM (2006) Prediction and identification of Herpes Simplex Virus 1-encoded microRNAs. J Virol 80(11):5499–5508PubMedCrossRef Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang X-J, Coen DM (2006) Prediction and identification of Herpes Simplex Virus 1-encoded microRNAs. J Virol 80(11):5499–5508PubMedCrossRef
15.
go back to reference Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM, Coen DM (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84(9):4659–4672. doi:10.1128/JVI.02725-09 PubMedCrossRef Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM, Coen DM (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84(9):4659–4672. doi:10.​1128/​JVI.​02725-09 PubMedCrossRef
16.
go back to reference Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454(7205):780–783. doi:10.1038/nature07103 PubMed Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454(7205):780–783. doi:10.​1038/​nature07103 PubMed
17.
go back to reference Jiang C, Hwang YT, Randell JC, Coen DM, Hwang CB (2007) Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol 81(7):3495–3502. doi:10.1128/JVI.02359-06 PubMedCrossRef Jiang C, Hwang YT, Randell JC, Coen DM, Hwang CB (2007) Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol 81(7):3495–3502. doi:10.​1128/​JVI.​02359-06 PubMedCrossRef
18.
go back to reference Weller SK, Aschman DP, Sacks WR, Coen DM, Schaffer PA (1983) Genetic analysis of temperature sensitive mutants of HSV-1: the combined use of complementation and physical mapping for cistron assignment. Virology 130:290–305PubMedCrossRef Weller SK, Aschman DP, Sacks WR, Coen DM, Schaffer PA (1983) Genetic analysis of temperature sensitive mutants of HSV-1: the combined use of complementation and physical mapping for cistron assignment. Virology 130:290–305PubMedCrossRef
21.
go back to reference Goecks J, Nekrutenko A, Taylor J, Team TG (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86PubMedCrossRef Goecks J, Nekrutenko A, Taylor J, Team TG (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86PubMedCrossRef
22.
go back to reference Langmead B, Trapnall C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRef Langmead B, Trapnall C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRef
23.
go back to reference Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedCrossRef Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedCrossRef
24.
go back to reference Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415PubMedCrossRef Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415PubMedCrossRef
25.
26.
go back to reference Yuan JS, Wang D, Stewart CN Jr (2008) Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J 3(1):112–123PubMedCrossRef Yuan JS, Wang D, Stewart CN Jr (2008) Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J 3(1):112–123PubMedCrossRef
27.
go back to reference Gierasch WW, Zimmerman DL, Ward SL, VanHeyningen TK, Romine JD, Leib DA (2006) Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 135:197–206PubMedCrossRef Gierasch WW, Zimmerman DL, Ward SL, VanHeyningen TK, Romine JD, Leib DA (2006) Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 135:197–206PubMedCrossRef
28.
go back to reference Frink RJ, Anderson KP, Wagner EK (1981) Herpes simplex virus type 1 HindIII fragment L encodes spliced and complementary mRNA species. J Virol 39(2):559–572PubMed Frink RJ, Anderson KP, Wagner EK (1981) Herpes simplex virus type 1 HindIII fragment L encodes spliced and complementary mRNA species. J Virol 39(2):559–572PubMed
29.
go back to reference McGeoch DJ, Dalrymple MA, Dolan A, McNab D, Perry LJ, Taylor P, Challberg MD (1988) Structures of herpes simplex virus type 1 genes required for replication of virus DNA. J Virol 62(2):444–453PubMed McGeoch DJ, Dalrymple MA, Dolan A, McNab D, Perry LJ, Taylor P, Challberg MD (1988) Structures of herpes simplex virus type 1 genes required for replication of virus DNA. J Virol 62(2):444–453PubMed
30.
go back to reference Jiang C, Hwang YT, Randell JCW, Coen DM, Hwang CBC (2007) Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol 81(7):3495–3502PubMedCrossRef Jiang C, Hwang YT, Randell JCW, Coen DM, Hwang CBC (2007) Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol 81(7):3495–3502PubMedCrossRef
31.
go back to reference Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DM, Howley PM (eds) Fields Virology, 5th edn. Williams & Wilkins, Philadelphia, pp 2501–2602 Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DM, Howley PM (eds) Fields Virology, 5th edn. Williams & Wilkins, Philadelphia, pp 2501–2602
32.
go back to reference Marchetti ME, Smith CA, Schaffer PA (1988) A temperature-sensitive mutation in a herpes simplex virus type 1 gene required for viral DNA synthesis maps to coordinates 0.609 through 0.614 in UL. J Virol 62(3):715–721PubMed Marchetti ME, Smith CA, Schaffer PA (1988) A temperature-sensitive mutation in a herpes simplex virus type 1 gene required for viral DNA synthesis maps to coordinates 0.609 through 0.614 in UL. J Virol 62(3):715–721PubMed
Metadata
Title
A novel miRNA produced during lytic HSV-1 infection is important for efficient replication in tissue culture
Authors
Daniel J. Munson
April D. Burch
Publication date
01-09-2012
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 9/2012
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-012-1345-4

Other articles of this Issue 9/2012

Archives of Virology 9/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine