Skip to main content
Top
Published in: BMC Public Health 1/2016

Open Access 01-12-2016 | Research article

A non-equivalent group pilot trial of a school-based physical activity and fitness intervention for 10–11 year old english children: born to move

Authors: Stuart J. Fairclough, Bronagh McGrane, George Sanders, Sarah Taylor, Michael Owen, Whitney Curry

Published in: BMC Public Health | Issue 1/2016

Login to get access

Abstract

Background

PE lessons are the formal opportunity in schools for promotion of physical activity and fitness. This study aimed to evaluate the effectiveness of a pilot PE intervention on physical activity, fitness, and psychosocial outcomes.

Methods

Participants were 139 children aged 10–11 years from four schools. For six weeks children in two schools received a twice-weekly pilot ‘Born to Move’ (BTM) physical activity (PA) and fitness intervention alongside one regular PE lesson. Children in the two comparison (COM) schools received their regular twice weekly PE lessons. Outcomes were lesson time and whole-day light (LPA), moderate (MPA), vigorous (VPA), and MVPA, and sedentary time, muscular fitness, cardiorespiratory fitness (CRF), and lesson-specific perceived exertion, enjoyment, and perceived competence. Outcomes were assessed at baseline (T0), midway through the intervention (T1), and at the end (T2) using ANOVAs and ANCOVAs. Intervention fidelity was measured using child and teacher surveys at T2 and analysed using Chi-square tests.

Results

The BTM group engaged in moderate PA for significantly more lesson time (29.4 %) than the COM group (25.8 %; p = .009, d = .53). The amount of moderate-to-vigorous PA (MVPA) during the T1 BTM lesson contributed 14.0 % to total MVPA, which was significantly more than the COM group’s T1 PE lesson (11.4 %; p < .001, d = .47). The BTM group were significantly more active during the whole-day (p < .05) and the school-day (p < .01). In both groups push-up test performance increased (p < .001) and CRF test performance decreased (p < .01). Perceived exertion, enjoyment, and perceived competence increased in both groups (p < .05), but the BTM group rated their enjoyment of the T1 BTM lesson higher than the COM group rated their PE lesson (p = .02, d = .56). The children’s and teachers’ responses to the intervention indicated that the delivery aims of enjoyment, engagement, inclusivity, and challenge were satisfied.

Conclusions

The BTM pilot programme has potential to positively impact on physical activity, fitness, and psychosocial outcomes. Further, BTM was enjoyed by the children, and valued by the teachers. This study can inform the design of a modified larger-scale cluster RCT evaluation.
Literature
1.
go back to reference Chief Medical Officers. Start active, stay active. A report on physical activity for health from the four home countries. London: DH; 2011. Chief Medical Officers. Start active, stay active. A report on physical activity for health from the four home countries. London: DH; 2011.
2.
go back to reference Smith J, Eather N, Morgan P, Plotnikoff R, Faigenbaum A, Lubans D. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23.CrossRefPubMed Smith J, Eather N, Morgan P, Plotnikoff R, Faigenbaum A, Lubans D. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23.CrossRefPubMed
3.
go back to reference Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. Sports Med. 2010;40(12):1019–35.CrossRefPubMed Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. Sports Med. 2010;40(12):1019–35.CrossRefPubMed
4.
go back to reference Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, et al. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010;42:1072–8.CrossRefPubMedPubMedCentral Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, et al. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010;42:1072–8.CrossRefPubMedPubMedCentral
5.
go back to reference Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral
6.
7.
go back to reference Parikh T, Stratton G. Influence of intensity of physical activity on adiposity and cardiorespiratory fitness in 5–18 year olds. Sports Med. 2011;41(6):477–88.CrossRefPubMed Parikh T, Stratton G. Influence of intensity of physical activity on adiposity and cardiorespiratory fitness in 5–18 year olds. Sports Med. 2011;41(6):477–88.CrossRefPubMed
8.
go back to reference Boddy LM, Fairclough SJ, Atkinson G, Stratton G. Changes in cardiorespiratory fitness in 9- to 10.9-year-old children: SportsLinx 1998–2010. Med Sci Sports Exerc. 2012;44(3):481–6.CrossRefPubMed Boddy LM, Fairclough SJ, Atkinson G, Stratton G. Changes in cardiorespiratory fitness in 9- to 10.9-year-old children: SportsLinx 1998–2010. Med Sci Sports Exerc. 2012;44(3):481–6.CrossRefPubMed
9.
go back to reference Cohen DD, Voss C, Taylor MJD, Delextrat A, Ogunleye AA, Sandercock GRH. Ten-year secular changes in muscular fitness in english children. Acta Paediatr. 2011;100(10):e175–7.CrossRefPubMed Cohen DD, Voss C, Taylor MJD, Delextrat A, Ogunleye AA, Sandercock GRH. Ten-year secular changes in muscular fitness in english children. Acta Paediatr. 2011;100(10):e175–7.CrossRefPubMed
10.
go back to reference Carson V, Ridgers ND, Howard BJ, Winkler EAH, Healy GN, Owen N, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS ONE. 2013;8(8):1–7.CrossRef Carson V, Ridgers ND, Howard BJ, Winkler EAH, Healy GN, Owen N, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS ONE. 2013;8(8):1–7.CrossRef
11.
go back to reference Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23(2):218–29.CrossRefPubMedPubMedCentral Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23(2):218–29.CrossRefPubMedPubMedCentral
12.
go back to reference Tremblay M, Leblanc A, Kho M, Saunders T, Larouche R, Colley R. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral Tremblay M, Leblanc A, Kho M, Saunders T, Larouche R, Colley R. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral
13.
go back to reference Kriemler S, Meyer U, Martin E, van Sluijs EMF, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45(11):923–30.CrossRefPubMed Kriemler S, Meyer U, Martin E, van Sluijs EMF, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45(11):923–30.CrossRefPubMed
14.
go back to reference Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651. Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.
15.
go back to reference Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, et al. Effect of a school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.CrossRefPubMedPubMedCentral Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, et al. Effect of a school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.CrossRefPubMedPubMedCentral
16.
go back to reference Dishman RK, Motl RW, Saunders R, Felton G, Ward DS, Dowda M, et al. Enjoyment mediates effects of a school-based physical-activity intervention. Med Sci Sports Exerc. 2005;37(3):478–87.CrossRefPubMed Dishman RK, Motl RW, Saunders R, Felton G, Ward DS, Dowda M, et al. Enjoyment mediates effects of a school-based physical-activity intervention. Med Sci Sports Exerc. 2005;37(3):478–87.CrossRefPubMed
17.
go back to reference Sallis JF, McKenzie TL, Beets MW, Beighle A, Erwin H, Lee S. Physical education’s role in public health: steps forward and backward over 20 years and HOPE for the future. Res Q Exerc Sport. 2012;83(2):125–35.PubMed Sallis JF, McKenzie TL, Beets MW, Beighle A, Erwin H, Lee S. Physical education’s role in public health: steps forward and backward over 20 years and HOPE for the future. Res Q Exerc Sport. 2012;83(2):125–35.PubMed
18.
go back to reference Lonsdale C, Rosenkranz RR, Peralta LR, Bennie A, Fahey P, Lubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Prev Med. 2013;56(2):152–61.CrossRefPubMed Lonsdale C, Rosenkranz RR, Peralta LR, Bennie A, Fahey P, Lubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Prev Med. 2013;56(2):152–61.CrossRefPubMed
19.
go back to reference Erfle SE, Gamble A. Effects of daily physical education on physical fitness and weight status in middle school adolescents. J Sch Health. 2015;85(1):27–35.CrossRefPubMed Erfle SE, Gamble A. Effects of daily physical education on physical fitness and weight status in middle school adolescents. J Sch Health. 2015;85(1):27–35.CrossRefPubMed
20.
go back to reference Sallis JF, McKenzie TL, Alcaraz JE, Kolody B, Faucette N, Hovell MF. The effects of a 2 year physical education programme (SPARK) on physical activity and fitness in elementary school students. Am J Public Health. 1997;87:1328–34.CrossRefPubMedPubMedCentral Sallis JF, McKenzie TL, Alcaraz JE, Kolody B, Faucette N, Hovell MF. The effects of a 2 year physical education programme (SPARK) on physical activity and fitness in elementary school students. Am J Public Health. 1997;87:1328–34.CrossRefPubMedPubMedCentral
21.
go back to reference Fairclough SJ, Stratton G. Improving health-enhancing physical activity in girls’ physical education. Health Educ Res. 2005;20(4):448–57.CrossRefPubMed Fairclough SJ, Stratton G. Improving health-enhancing physical activity in girls’ physical education. Health Educ Res. 2005;20(4):448–57.CrossRefPubMed
22.
go back to reference Department for Education. The national crriculum in England. Framework document. London: DfE; 2013. Department for Education. The national crriculum in England. Framework document. London: DfE; 2013.
23.
go back to reference Fairclough SJ, Stratton G, Baldwin G. The contribution of secondary school physical education to lifetime physical activity. Eur Phys Educ Rev. 2002;8(1):69–84.CrossRef Fairclough SJ, Stratton G, Baldwin G. The contribution of secondary school physical education to lifetime physical activity. Eur Phys Educ Rev. 2002;8(1):69–84.CrossRef
24.
go back to reference Des Jarlais DC, Lyles C, Crepaz N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am J Public Health. 2004;94(3):361–6.CrossRefPubMedPubMedCentral Des Jarlais DC, Lyles C, Crepaz N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am J Public Health. 2004;94(3):361–6.CrossRefPubMedPubMedCentral
25.
go back to reference Department for Communities and Local Government. The english indices of deprivation. Statistical release. London: DCLG; 2015. Department for Communities and Local Government. The english indices of deprivation. Statistical release. London: DCLG; 2015.
26.
go back to reference Billingham SA, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom clinical research network database. BMC Med Res Methodol. 2013;13(1):1–6.CrossRef Billingham SA, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom clinical research network database. BMC Med Res Methodol. 2013;13(1):1–6.CrossRef
27.
go back to reference Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10(1):1–10.CrossRefPubMedPubMedCentral Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10(1):1–10.CrossRefPubMedPubMedCentral
28.
go back to reference Welk GJ. The youth physical activity promotion model: a conceptual bridge between theory and practice. Quest. 1999;51:5–23.CrossRef Welk GJ. The youth physical activity promotion model: a conceptual bridge between theory and practice. Quest. 1999;51:5–23.CrossRef
29.
go back to reference Rowe DA, Raedeke TD, Wiersma LD, Mahar MT. Investigating the youth physical activity promotion model: internal structure and external validity evidence for a potential measurement model. Pediatr Exerc Sci. 2007;19:42–435. Rowe DA, Raedeke TD, Wiersma LD, Mahar MT. Investigating the youth physical activity promotion model: internal structure and external validity evidence for a potential measurement model. Pediatr Exerc Sci. 2007;19:42–435.
30.
go back to reference Lohman TG, Roche AFM, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics; 1991. Lohman TG, Roche AFM, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics; 1991.
32.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–4.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–4.CrossRefPubMedPubMedCentral
33.
go back to reference Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.PubMed Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.PubMed
35.
go back to reference Hraski M, Hraski Z, Mrakovic S, Horvat V. Relation between anthropometric characteristics and kinematic parameters which influence standing long jump efficiency in boys and adolescents. Coll Antropol. 2015;39 Suppl 1:47–55.PubMed Hraski M, Hraski Z, Mrakovic S, Horvat V. Relation between anthropometric characteristics and kinematic parameters which influence standing long jump efficiency in boys and adolescents. Coll Antropol. 2015;39 Suppl 1:47–55.PubMed
36.
go back to reference Andersen LB, Andersen TE, Andersen E, Anderssen SA. An intermittent running test to estimate maximal oxygen uptake: the Andersen test. J Sports Med Phys Fitness. 2008;48:434–7.PubMed Andersen LB, Andersen TE, Andersen E, Anderssen SA. An intermittent running test to estimate maximal oxygen uptake: the Andersen test. J Sports Med Phys Fitness. 2008;48:434–7.PubMed
37.
go back to reference Aadland E, Terum T, Mamen A, Andersen LB, Resaland GK. The Andersen aerobic fitness test: reliability and validity in 10-year-old children. PLoS ONE. 2014;9(10):e110492.CrossRefPubMedPubMedCentral Aadland E, Terum T, Mamen A, Andersen LB, Resaland GK. The Andersen aerobic fitness test: reliability and validity in 10-year-old children. PLoS ONE. 2014;9(10):e110492.CrossRefPubMedPubMedCentral
38.
go back to reference Robertson RJ, Goss FL, Andreacci JL, Dube JJ, Rutlowski JJ, Snee BM, et al. Validation of the children’s OMNI scale for stepping exercise. Med Sci Sports Exerc. 2005;37(2):290–8.CrossRefPubMed Robertson RJ, Goss FL, Andreacci JL, Dube JJ, Rutlowski JJ, Snee BM, et al. Validation of the children’s OMNI scale for stepping exercise. Med Sci Sports Exerc. 2005;37(2):290–8.CrossRefPubMed
39.
go back to reference Cuddihy TF, Corbin CB, Dale D. A short instrument for assessing intrinsic motivation for physical activity. Phys Educ. 2002;59(1):26–37. Cuddihy TF, Corbin CB, Dale D. A short instrument for assessing intrinsic motivation for physical activity. Phys Educ. 2002;59(1):26–37.
40.
go back to reference Goudas M, Biddle S. Perceived motivational climate and intrinsic motivation in school physical education classes. Eur J Psychol Educ. 1994;9(3):241–50.CrossRef Goudas M, Biddle S. Perceived motivational climate and intrinsic motivation in school physical education classes. Eur J Psychol Educ. 1994;9(3):241–50.CrossRef
41.
go back to reference Goudas M, Biddle SJH, Fox KR. Perceived locus of causality, goal orientations, and perceived competence in school physical education classes. Br J Educ Psychol. 1994;64:453–63.CrossRefPubMed Goudas M, Biddle SJH, Fox KR. Perceived locus of causality, goal orientations, and perceived competence in school physical education classes. Br J Educ Psychol. 1994;64:453–63.CrossRefPubMed
43.
go back to reference Evenson K, Catellier D, Gill K, Ondrak K, McMurray R. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.CrossRefPubMed Evenson K, Catellier D, Gill K, Ondrak K, McMurray R. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.CrossRefPubMed
44.
go back to reference Chandler JL, Brazendale K, Beets MW, Mealing BA. Classification of physical activity intensities using a wrist-worn accelerometer in 8–12-year-old children. Pediatr Obes. 2016;11:120–7.CrossRefPubMed Chandler JL, Brazendale K, Beets MW, Mealing BA. Classification of physical activity intensities using a wrist-worn accelerometer in 8–12-year-old children. Pediatr Obes. 2016;11:120–7.CrossRefPubMed
45.
go back to reference Vincent W, Weir JP. Statistics in kinesiology. 4th ed. Champaign: Human Kinetics; 2012. Vincent W, Weir JP. Statistics in kinesiology. 4th ed. Champaign: Human Kinetics; 2012.
46.
go back to reference Kreft I, de Leeuw J. Introducing multilevel modelling. Thousand Oaks: Sage; 1998.CrossRef Kreft I, de Leeuw J. Introducing multilevel modelling. Thousand Oaks: Sage; 1998.CrossRef
47.
go back to reference de Boer M, Waterlander W, Kuijper L, Steenhuis I, Twisk J. Testing for baseline differences in randomized controlled trials: an unhealthy research behavior that is hard to eradicate. Int J Behav Nutr Phys Act. 2015;12(1):4.CrossRefPubMedPubMedCentral de Boer M, Waterlander W, Kuijper L, Steenhuis I, Twisk J. Testing for baseline differences in randomized controlled trials: an unhealthy research behavior that is hard to eradicate. Int J Behav Nutr Phys Act. 2015;12(1):4.CrossRefPubMedPubMedCentral
48.
go back to reference Lloyd LK, Bishop PA, Walker JL, Sharp KR, Richardson MT. The Influence of body size and composition on FITNESSGRAM test performance and the adjustment of FITNESSGRAM test scores for skinfold thickness in youth. Meas Phys Educ Exerc Sci. 2003;7(4):205–26.CrossRef Lloyd LK, Bishop PA, Walker JL, Sharp KR, Richardson MT. The Influence of body size and composition on FITNESSGRAM test performance and the adjustment of FITNESSGRAM test scores for skinfold thickness in youth. Meas Phys Educ Exerc Sci. 2003;7(4):205–26.CrossRef
49.
go back to reference Plowman SA. Top 10 research questions related to musculoskeletal physical fitness testing in children and adolescents. Res Q Exerc Sport. 2014;85(2):174–87.CrossRefPubMed Plowman SA. Top 10 research questions related to musculoskeletal physical fitness testing in children and adolescents. Res Q Exerc Sport. 2014;85(2):174–87.CrossRefPubMed
50.
go back to reference Charlton R, Gravenor M, Rees A, Knox G, Hill R, Rahman M, et al. Factors associated with low fitness in adolescents - a mixed methods study. BMC Public Health. 2014;14(1):764.CrossRefPubMedPubMedCentral Charlton R, Gravenor M, Rees A, Knox G, Hill R, Rahman M, et al. Factors associated with low fitness in adolescents - a mixed methods study. BMC Public Health. 2014;14(1):764.CrossRefPubMedPubMedCentral
51.
go back to reference Jimenez-Pavon D, Ortega FB, Ruiz JR, Chillon P, Castillo R, Artero EG, et al. Influence of socioeconomic factors on fitness and fatness in Spanish adolescents: the AVENA study. Int J Pediatr Obes. 2010;5(6):467–73.CrossRefPubMed Jimenez-Pavon D, Ortega FB, Ruiz JR, Chillon P, Castillo R, Artero EG, et al. Influence of socioeconomic factors on fitness and fatness in Spanish adolescents: the AVENA study. Int J Pediatr Obes. 2010;5(6):467–73.CrossRefPubMed
52.
go back to reference Veligekas P, Tsoukos A, Bogdanis GC. Determinants of standing long jump performance in 9–12 year old children. Serb J Sports Sci. 2012;6(4):147–55. Veligekas P, Tsoukos A, Bogdanis GC. Determinants of standing long jump performance in 9–12 year old children. Serb J Sports Sci. 2012;6(4):147–55.
53.
go back to reference Snijders TAB, Bosker RJ. Standard errors and sample sizes for two-level research. J Educ Stat. 1993;18:237–59.CrossRef Snijders TAB, Bosker RJ. Standard errors and sample sizes for two-level research. J Educ Stat. 1993;18:237–59.CrossRef
55.
go back to reference U.S. Department of health and human services. Strategies to improve the quality of physical education. Washington, DC: United States Government; 2010. U.S. Department of health and human services. Strategies to improve the quality of physical education. Washington, DC: United States Government; 2010.
56.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Ass. Publishers; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Ass. Publishers; 1988.
58.
go back to reference Fairclough SJ, Stratton G. A review of physical activity levels during elementary school physical education. J Teach Phys Educ. 2006;25:240–58.CrossRef Fairclough SJ, Stratton G. A review of physical activity levels during elementary school physical education. J Teach Phys Educ. 2006;25:240–58.CrossRef
59.
go back to reference Chen S, Kim Y, Gao Z. The contributing role of physical education in youth’s daily physical activity and sedentary behavior. BMC Public Health. 2014;14(1):110.CrossRefPubMedPubMedCentral Chen S, Kim Y, Gao Z. The contributing role of physical education in youth’s daily physical activity and sedentary behavior. BMC Public Health. 2014;14(1):110.CrossRefPubMedPubMedCentral
60.
go back to reference Meyer U, Roth R, Zahner L, Gerber M, Puder JJ, Hebestreit H, et al. Contribution of physical education to overall physical activity. Scan J Med Sci Sports. 2013;23(5):600–6. Meyer U, Roth R, Zahner L, Gerber M, Puder JJ, Hebestreit H, et al. Contribution of physical education to overall physical activity. Scan J Med Sci Sports. 2013;23(5):600–6.
61.
go back to reference Alderman BL, Benham-Deal T, Beighle A, Erwin HE, Olson RL. Physical education’s contribution to daily physical activity among middle school youth. Pediatr Exerc Sci. 2012;24(4):634–48.CrossRefPubMed Alderman BL, Benham-Deal T, Beighle A, Erwin HE, Olson RL. Physical education’s contribution to daily physical activity among middle school youth. Pediatr Exerc Sci. 2012;24(4):634–48.CrossRefPubMed
62.
go back to reference Morgan CF, Beighle A, Pangrazi RP. What are the contributory and compensatory relationships between physical education and physical activity in children? Res Qy Exerc Sport. 2007;78(5):407–12.CrossRef Morgan CF, Beighle A, Pangrazi RP. What are the contributory and compensatory relationships between physical education and physical activity in children? Res Qy Exerc Sport. 2007;78(5):407–12.CrossRef
63.
go back to reference Mallam K, Metcalf B, Kirkby J, Voss L, Wilkin T. Contribution of timetabled physical education to total physical activity in primary school children: cross sectional study. BMJ. 2004;327:592–3.CrossRef Mallam K, Metcalf B, Kirkby J, Voss L, Wilkin T. Contribution of timetabled physical education to total physical activity in primary school children: cross sectional study. BMJ. 2004;327:592–3.CrossRef
64.
go back to reference Wilkin TJ. Can we modulate physical activity in children? No Int J Obes. 2011;36:1270–6.CrossRef Wilkin TJ. Can we modulate physical activity in children? No Int J Obes. 2011;36:1270–6.CrossRef
65.
go back to reference Wu G, Sanderson B, Bittner V. The 6-minute walk test: How important is the learning effect? Am Heart J. 2003;146(1):129–33.CrossRefPubMed Wu G, Sanderson B, Bittner V. The 6-minute walk test: How important is the learning effect? Am Heart J. 2003;146(1):129–33.CrossRefPubMed
66.
go back to reference Beunen G, Thomis M. Muscular strength development in children and adolescents. Pediatr Exerc Sci. 2000;12:174–97.CrossRef Beunen G, Thomis M. Muscular strength development in children and adolescents. Pediatr Exerc Sci. 2000;12:174–97.CrossRef
67.
go back to reference Castro-Piñero J, Ortega FB, Artero EG, Girela-Rejón MJ, Mora J, Sjöström M, et al. Assessing muscular strength in youth: usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res. 2010;24(7):1810–7.CrossRefPubMed Castro-Piñero J, Ortega FB, Artero EG, Girela-Rejón MJ, Mora J, Sjöström M, et al. Assessing muscular strength in youth: usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res. 2010;24(7):1810–7.CrossRefPubMed
68.
go back to reference Bendiksen M, Ahler T, Clausen H, Wedderkopp N, Krustrup P. The use of Yo-Yo intermittent recovery level 1 and Andersen testing for fitness and maximal heart rate assessments of 6- to 10-year-old school children. J Strength Cond Res. 2013;27(6):1583–90.CrossRefPubMed Bendiksen M, Ahler T, Clausen H, Wedderkopp N, Krustrup P. The use of Yo-Yo intermittent recovery level 1 and Andersen testing for fitness and maximal heart rate assessments of 6- to 10-year-old school children. J Strength Cond Res. 2013;27(6):1583–90.CrossRefPubMed
69.
go back to reference Cureton KJ, Sloniger MA, O’Bannon JP, Black DM, McCormack WP. A generalized equation for prediction of VO2peak from 1-mile run/walk performance. Med Sci Sports Exerc. 1995;27(3):445–51.CrossRefPubMed Cureton KJ, Sloniger MA, O’Bannon JP, Black DM, McCormack WP. A generalized equation for prediction of VO2peak from 1-mile run/walk performance. Med Sci Sports Exerc. 1995;27(3):445–51.CrossRefPubMed
70.
go back to reference Goudas M, Biddle SJH, Fox KR. Achievement goal orientations and intrinsic motivation in physical fitness testing with children. Pediatr Exerc Sci. 1994;6(2):159–67.CrossRef Goudas M, Biddle SJH, Fox KR. Achievement goal orientations and intrinsic motivation in physical fitness testing with children. Pediatr Exerc Sci. 1994;6(2):159–67.CrossRef
71.
go back to reference Wankel LM. The importance of enjoyment to adherenece and psychological benefits from physical activity. Int J Sport Psych. 1993;24:151–69. Wankel LM. The importance of enjoyment to adherenece and psychological benefits from physical activity. Int J Sport Psych. 1993;24:151–69.
72.
go back to reference Deci EL, Ryan RM. Intrinsic motivation and self-determination in human behavior. New York: Plenum Press; 1985.CrossRef Deci EL, Ryan RM. Intrinsic motivation and self-determination in human behavior. New York: Plenum Press; 1985.CrossRef
73.
go back to reference Klint K, Weiss M. Perceived competence and motives for participation in youth sports: a test of Harter’s competence motivation theory. J Sport Psychol. 1987;9:55–65.CrossRef Klint K, Weiss M. Perceived competence and motives for participation in youth sports: a test of Harter’s competence motivation theory. J Sport Psychol. 1987;9:55–65.CrossRef
74.
go back to reference Fairclough SJ, Hilland TA, Stratton G, Ridgers ND. Am I able? is it worth it?” adolescent girls’ motivational predispositions to school physical education: associations with health-enhancing physical activity. Eur Phys Educ Rev. 2012;18:147–58.CrossRef Fairclough SJ, Hilland TA, Stratton G, Ridgers ND. Am I able? is it worth it?” adolescent girls’ motivational predispositions to school physical education: associations with health-enhancing physical activity. Eur Phys Educ Rev. 2012;18:147–58.CrossRef
75.
go back to reference Cairney J, Kwan M, Velduizen S, Hay J, Bray S, Faught B. Gender, perceived competence and the enjoyment of physical education in children: a longitudinal examination. Int J Behav Nutr Phys Act. 2012;9(1):26.CrossRefPubMedPubMedCentral Cairney J, Kwan M, Velduizen S, Hay J, Bray S, Faught B. Gender, perceived competence and the enjoyment of physical education in children: a longitudinal examination. Int J Behav Nutr Phys Act. 2012;9(1):26.CrossRefPubMedPubMedCentral
76.
go back to reference Fox KR, Biddle SJH. The child’s perspective in physical education part 2: Children’s participation motives. Br J Phys Educ. 1988;19(2):79–82. Fox KR, Biddle SJH. The child’s perspective in physical education part 2: Children’s participation motives. Br J Phys Educ. 1988;19(2):79–82.
77.
go back to reference Weiss MR. Self-esteem and achievement in children’s sport and physical activity. In: Gould D, Weiss MR, editors. Advances in pediatric sport sciences, vol. 2, behavioural issues. Champaign: Human Kinetics; 1987. Weiss MR. Self-esteem and achievement in children’s sport and physical activity. In: Gould D, Weiss MR, editors. Advances in pediatric sport sciences, vol. 2, behavioural issues. Champaign: Human Kinetics; 1987.
78.
go back to reference van Beurden E, Barnett LM, Zask A, Dietrich UC, Brooks LO, Beard J. Can we skill and activate children through primary school physical education lessons? “move it groove it”- a collaborative health promotion intervention. Prev Med. 2003;36(4):493–501.CrossRefPubMed van Beurden E, Barnett LM, Zask A, Dietrich UC, Brooks LO, Beard J. Can we skill and activate children through primary school physical education lessons? “move it groove it”- a collaborative health promotion intervention. Prev Med. 2003;36(4):493–501.CrossRefPubMed
79.
go back to reference Timo J, Sami YP, Anthony W, Jarmo L. Perceived physical competence towards physical activity, and motivation and enjoyment in physical education as longitudinal predictors of adolescents’ self-reported physical activity. J Sci Med Sport. 2015;19:750-54. Timo J, Sami YP, Anthony W, Jarmo L. Perceived physical competence towards physical activity, and motivation and enjoyment in physical education as longitudinal predictors of adolescents’ self-reported physical activity. J Sci Med Sport. 2015;19:750-54.
80.
go back to reference Eather N, Morgan P, Lubans D. Social support from teachers mediates physical activity behavior change in children participating in the Fit-4-Fun intervention. Int J Behav Nutr Phys Act. 2013;10(1):68.CrossRefPubMedPubMedCentral Eather N, Morgan P, Lubans D. Social support from teachers mediates physical activity behavior change in children participating in the Fit-4-Fun intervention. Int J Behav Nutr Phys Act. 2013;10(1):68.CrossRefPubMedPubMedCentral
81.
go back to reference Owen N, Glanz K, Sallis JF, Kelder SH. Evidence-based approaches to dissemination and diffusion of physical activity interventions. Am J Prev Med. 2006;31(4S):S35–41.CrossRefPubMed Owen N, Glanz K, Sallis JF, Kelder SH. Evidence-based approaches to dissemination and diffusion of physical activity interventions. Am J Prev Med. 2006;31(4S):S35–41.CrossRefPubMed
Metadata
Title
A non-equivalent group pilot trial of a school-based physical activity and fitness intervention for 10–11 year old english children: born to move
Authors
Stuart J. Fairclough
Bronagh McGrane
George Sanders
Sarah Taylor
Michael Owen
Whitney Curry
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2016
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-3550-7

Other articles of this Issue 1/2016

BMC Public Health 1/2016 Go to the issue