Skip to main content
Top
Published in: BMC Medicine 1/2007

Open Access 01-12-2007 | Research article

A new therapy for highly effective tumor eradication using HVJ-E combined with chemotherapy

Authors: Hirokazu Kawano, Shintarou Komaba, Toshihide Kanamori, Yasufumi Kaneda

Published in: BMC Medicine | Issue 1/2007

Login to get access

Abstract

Background

Inactivated HVJ (hemagglutinating virus of Japan; Sendai virus) particles (HVJ envelope vector; HVJ-E can incorporate and deliver plasmid DNA, siRNA, antibody and peptide and anti-cancer drugs to cells both in vitro and in vivo. We attempted to eradicate tumors derived from mouse colon cancer cells, CT26, by combining bleomycin (BLM)-incorporated HVJ-E (HVJ-E/BLM) with cisplatin (CDDP) administration.

Methods

CT-26 tumor mass was intradermally established in Balb/c mice. HVJ-E/BLM was directly injected into the tumor mass with or without intraperitoneal administration of CDDP. The anti-tumor effect was evaluated by measuring tumor size and cytotoxic T cell activity against CT26. Re-challenge of tumor cells to treated mice was performed 10 days or 8 months after the initial tumor inoculation.

Results

We found that three intratumoral injections of HVJ-E/BLM along with a single intraperitoneal administration of CDDP eradicated CT26 tumors with more than 75% efficiency. When tumor cells were intradermally re-injected on day 10 after the initial tumor inoculation, tumors on both sides disappeared in most of the mice that received the combination therapy of HVJ-E/BLM and CDDP. Eight months after the initial tumor eradication, surviving mice were re-challenged with CT26 cells. The re-challenged tumors were rejected in all of the surviving mice treated with the combination therapy. Cytotoxic T lymphocytes specific for CT26 were generated in these surviving mice.

Conclusion

Combination therapy consisting of HVJ-E and chemotherapy completely eradicated the tumor, and generated anti-tumor immunity. The combination therapy could therefore be a promising new strategy for cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Russell SJ: RNA viruses as virotherapy agents. Cancer Gene Ther. 2002, 9: 961-6. 10.1038/sj.cgt.7700535.CrossRefPubMed Russell SJ: RNA viruses as virotherapy agents. Cancer Gene Ther. 2002, 9: 961-6. 10.1038/sj.cgt.7700535.CrossRefPubMed
2.
go back to reference McCormick F: Cancer-specific viruses and the development of ONYX-015. Cancer Biol Ther. 2003, 2: S157-60.CrossRefPubMed McCormick F: Cancer-specific viruses and the development of ONYX-015. Cancer Biol Ther. 2003, 2: S157-60.CrossRefPubMed
3.
go back to reference Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997, 3: 639-45. 10.1038/nm0697-639.CrossRefPubMed Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997, 3: 639-45. 10.1038/nm0697-639.CrossRefPubMed
4.
go back to reference Kurihara T, Brough DE, Kovesdi I, Kufe DW: Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000, 106: 763-71.CrossRefPubMedPubMedCentral Kurihara T, Brough DE, Kovesdi I, Kufe DW: Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000, 106: 763-71.CrossRefPubMedPubMedCentral
5.
go back to reference Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL, Manns M, Kubicka S, Kuhnel F: A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003, 63: 3181-8.PubMed Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL, Manns M, Kubicka S, Kuhnel F: A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003, 63: 3181-8.PubMed
6.
go back to reference Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS, Rich D, Blackburn A, Sands B, Gibson B, et al: Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. 2003, 10: 341-52. 10.1038/sj.cgt.7700585.CrossRefPubMed Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS, Rich D, Blackburn A, Sands B, Gibson B, et al: Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. 2003, 10: 341-52. 10.1038/sj.cgt.7700585.CrossRefPubMed
7.
go back to reference Hann B, Balmain A: Replication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of-function p53 mutants. J Virol. 2003, 77: 11588-95. 10.1128/JVI.77.21.11588-11595.2003.CrossRefPubMedPubMedCentral Hann B, Balmain A: Replication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of-function p53 mutants. J Virol. 2003, 77: 11588-95. 10.1128/JVI.77.21.11588-11595.2003.CrossRefPubMedPubMedCentral
8.
go back to reference Kurooka M, Kaneda Y: Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 2007, 67: 227-36. 10.1158/0008-5472.CAN-06-1615.CrossRefPubMed Kurooka M, Kaneda Y: Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 2007, 67: 227-36. 10.1158/0008-5472.CAN-06-1615.CrossRefPubMed
9.
go back to reference Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N, Nakamura H, Morishita R, Kotani H: Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther. 2002, 6: 219-26. 10.1006/mthe.2002.0647.CrossRefPubMed Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N, Nakamura H, Morishita R, Kotani H: Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther. 2002, 6: 219-26. 10.1006/mthe.2002.0647.CrossRefPubMed
10.
go back to reference Mima H, Yamamoto S, Ito M, Tomoshige R, Tabata Y, Tamai K, Kaneda Y: Targeted chemotherapy against intraperitoneally disseminated colon carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol Cancer Ther. 2006, 5: 1021-8. 10.1158/1535-7163.MCT-05-0352.CrossRefPubMed Mima H, Yamamoto S, Ito M, Tomoshige R, Tabata Y, Tamai K, Kaneda Y: Targeted chemotherapy against intraperitoneally disseminated colon carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol Cancer Ther. 2006, 5: 1021-8. 10.1158/1535-7163.MCT-05-0352.CrossRefPubMed
11.
go back to reference Steinman RM, Mellman I: Immunotherapy: bewitched, bothered, and bewildered no more. Science. 2004, 305: 197-200. 10.1126/science.1099688.CrossRefPubMed Steinman RM, Mellman I: Immunotherapy: bewitched, bothered, and bewildered no more. Science. 2004, 305: 197-200. 10.1126/science.1099688.CrossRefPubMed
12.
go back to reference Blattman JN, Greenberg PD: Cancer immunotherapy: a treatment for the masses. Science. 2004, 305: 200-5. 10.1126/science.1100369.CrossRefPubMed Blattman JN, Greenberg PD: Cancer immunotherapy: a treatment for the masses. Science. 2004, 305: 200-5. 10.1126/science.1100369.CrossRefPubMed
13.
go back to reference Pawelec G: Immunotherapy and immunoselection – tumour escape as the final hurdle. FEBS Lett. 2004, 567: 63-6. 10.1016/j.febslet.2004.02.091.CrossRefPubMed Pawelec G: Immunotherapy and immunoselection – tumour escape as the final hurdle. FEBS Lett. 2004, 567: 63-6. 10.1016/j.febslet.2004.02.091.CrossRefPubMed
14.
go back to reference Ahmad M, Rees RC, Ali SA: Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother. 2004, 53: 844-54. 10.1007/s00262-004-0540-x.CrossRefPubMed Ahmad M, Rees RC, Ali SA: Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother. 2004, 53: 844-54. 10.1007/s00262-004-0540-x.CrossRefPubMed
15.
go back to reference Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H: Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA. 1998, 95: 1178-83. 10.1073/pnas.95.3.1178.CrossRefPubMedPubMedCentral Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H: Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA. 1998, 95: 1178-83. 10.1073/pnas.95.3.1178.CrossRefPubMedPubMedCentral
16.
go back to reference Wick M, Dubey P, Koeppen H, Siegel CT, Fields PE, Chen L, Bluestone JA, Schreiber H: Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med. 1997, 186: 229-38. 10.1084/jem.186.2.229.CrossRefPubMedPubMedCentral Wick M, Dubey P, Koeppen H, Siegel CT, Fields PE, Chen L, Bluestone JA, Schreiber H: Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med. 1997, 186: 229-38. 10.1084/jem.186.2.229.CrossRefPubMedPubMedCentral
17.
go back to reference Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH: CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood. 2002, 99: 2468-76. 10.1182/blood.V99.7.2468.CrossRefPubMed Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH: CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood. 2002, 99: 2468-76. 10.1182/blood.V99.7.2468.CrossRefPubMed
18.
go back to reference Banat GA, Christ O, Cochlovius B, Pralle HB, Zoller M: Tumour-induced suppression of immune response and its correction. Cancer Immunol Immunother. 2001, 49: 573-86. 10.1007/s002620000153.CrossRefPubMed Banat GA, Christ O, Cochlovius B, Pralle HB, Zoller M: Tumour-induced suppression of immune response and its correction. Cancer Immunol Immunother. 2001, 49: 573-86. 10.1007/s002620000153.CrossRefPubMed
19.
go back to reference Gardini A, Ercolani G, Riccobon A, Ravaioli M, Ridolfi L, Flamini E, Ridolfi R, Grazi GL, Cavallari A, Amadori D: Adjuvant, adoptive immunotherapy with tumor infiltrating lymphocytes plus interleukin-2 after radical hepatic resection for colorectal liver metastases: 5-year analysis. J Surg Oncol. 2004, 87: 46-52. 10.1002/jso.20066.CrossRefPubMed Gardini A, Ercolani G, Riccobon A, Ravaioli M, Ridolfi L, Flamini E, Ridolfi R, Grazi GL, Cavallari A, Amadori D: Adjuvant, adoptive immunotherapy with tumor infiltrating lymphocytes plus interleukin-2 after radical hepatic resection for colorectal liver metastases: 5-year analysis. J Surg Oncol. 2004, 87: 46-52. 10.1002/jso.20066.CrossRefPubMed
20.
go back to reference Smith RE, Colangelo L, Wieand HS, Begovic M, Wolmark N: Randomized trial of adjuvant therapy in colon carcinoma: 10-year results of NSABP protocol C-01. J Natl Cancer Inst. 2004, 96: 1128-32.CrossRefPubMed Smith RE, Colangelo L, Wieand HS, Begovic M, Wolmark N: Randomized trial of adjuvant therapy in colon carcinoma: 10-year results of NSABP protocol C-01. J Natl Cancer Inst. 2004, 96: 1128-32.CrossRefPubMed
21.
go back to reference McMillan TJ, Hart IR: Can cancer chemotherapy enhance the malignant behaviour of tumours?. Cancer Metastasis Rev. 1987, 6: 503-19. 10.1007/BF00047465.CrossRefPubMed McMillan TJ, Hart IR: Can cancer chemotherapy enhance the malignant behaviour of tumours?. Cancer Metastasis Rev. 1987, 6: 503-19. 10.1007/BF00047465.CrossRefPubMed
22.
go back to reference Allen TM, Cullis PR: Drug delivery systems: entering the mainstream. Science. 2004, 303: 1818-22. 10.1126/science.1095833.CrossRefPubMed Allen TM, Cullis PR: Drug delivery systems: entering the mainstream. Science. 2004, 303: 1818-22. 10.1126/science.1095833.CrossRefPubMed
23.
go back to reference Minko T, Dharap SS, Pakunlu RI, Wang Y: Molecular targeting of drug delivery systems to cancer. Curr Drug Targets. 2004, 5: 389-406. 10.2174/1389450043345443.CrossRefPubMed Minko T, Dharap SS, Pakunlu RI, Wang Y: Molecular targeting of drug delivery systems to cancer. Curr Drug Targets. 2004, 5: 389-406. 10.2174/1389450043345443.CrossRefPubMed
24.
go back to reference Fujihara A, Kurooka M, Miki T, Kaneda Y: Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunology Immunotherapy. Fujihara A, Kurooka M, Miki T, Kaneda Y: Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunology Immunotherapy.
25.
go back to reference Kawano H, Komaba S, Yamasaki T, Maeda M, Kimura Y, Maeda A, Kaneda Y: New potential therapy for orthotopic bladder carcinoma by combining HVJ envelope with doxorubicin. Cancer Chemother Pharmacol. Kawano H, Komaba S, Yamasaki T, Maeda M, Kimura Y, Maeda A, Kaneda Y: New potential therapy for orthotopic bladder carcinoma by combining HVJ envelope with doxorubicin. Cancer Chemother Pharmacol.
26.
go back to reference Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y: Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med. 2005, 7: 1044-52. 10.1002/jgm.753.CrossRefPubMed Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y: Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med. 2005, 7: 1044-52. 10.1002/jgm.753.CrossRefPubMed
Metadata
Title
A new therapy for highly effective tumor eradication using HVJ-E combined with chemotherapy
Authors
Hirokazu Kawano
Shintarou Komaba
Toshihide Kanamori
Yasufumi Kaneda
Publication date
01-12-2007
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2007
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-5-28

Other articles of this Issue 1/2007

BMC Medicine 1/2007 Go to the issue