Skip to main content
Top
Published in: Molecular Autism 1/2015

Open Access 01-12-2015 | Research

A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice

Authors: Emma L. Burrows, Liliana Laskaris, Lynn Koyama, Leonid Churilov, Joel C. Bornstein, Elisa L. Hill-Yardin, Anthony J. Hannan

Published in: Molecular Autism | Issue 1/2015

Login to get access

Abstract

Background

Aggression is common in patients with autism spectrum disorders (ASD) along with the core symptoms of impairments in social communication and repetitive behavior. Risperidone, an atypical antipsychotic, is widely used to treat aggression in ASD. In order to understand the neurobiological underpinnings of these challenging behaviors, a thorough characterisation of behavioral endophenotypes in animal models is required.

Methods

We investigated aggression in mice containing the ASD-associated R451C (arginine to cysteine residue 451 substitution) mutation in neuroligin-3 (NL3). Furthermore, we sought to verify social interaction impairments and assess olfaction, anxiety, and repetitive and restrictive behavior in NL3R451C mutant mice.

Results

We show a pronounced elevation in aggressive behavior in NL3R451C mutant mice. Treatment with risperidone reduced this aggression to wild-type (WT) levels. Juvenile and adult social interactions were also investigated, and subtle differences in initiation of interaction were seen in juvenile NL3R451C mice. No genotype differences in olfactory discrimination or anxiety were observed indicating that aggression was not dependent on altered olfaction, stress response, or social preference. We also describe repetitive behavior in NL3R451C mice as assessed by a clinically relevant object exploration task.

Conclusions

The presence of aberrant aggression and other behavioral phenotypes in NL3R451C mice consistent with clinical traits strengthen face validity of this model of ASD. Furthermore, we demonstrate predictive validity in this model through the reversal of the aggressive phenotype with risperidone. This is the first demonstration that risperidone can ameliorate aggression in an animal model of ASD and will inform mechanistic and therapeutic research into the neurobiology underlying abnormal behaviors in ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference APA. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Publishing; 2013. APA. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Publishing; 2013.
2.
go back to reference Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19(20):4072–82.PubMedCentralCrossRefPubMed Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19(20):4072–82.PubMedCentralCrossRefPubMed
3.
go back to reference Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 2009;32(7):402–12.CrossRefPubMed Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 2009;32(7):402–12.CrossRefPubMed
4.
go back to reference An JY, Cristino AS, Zhao Q, Edson J, Williams SM, Ravine D, et al., Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry. 2014;4:e394.PubMedCentralCrossRefPubMed An JY, Cristino AS, Zhao Q, Edson J, Williams SM, Ravine D, et al., Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry. 2014;4:e394.PubMedCentralCrossRefPubMed
5.
go back to reference Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19(3):294–301.CrossRefPubMed Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19(3):294–301.CrossRefPubMed
7.
go back to reference Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003;34(1):27–9.PubMedCentralCrossRefPubMed Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003;34(1):27–9.PubMedCentralCrossRefPubMed
8.
go back to reference Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(4):937–47.PubMedCentralPubMed Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(4):937–47.PubMedCentralPubMed
9.
go back to reference Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science. 2007;318(5847):71–6.PubMedCentralCrossRefPubMed Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science. 2007;318(5847):71–6.PubMedCentralCrossRefPubMed
10.
go back to reference Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, et al. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci. 2004;24(20):4889–93.CrossRefPubMed Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, et al. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci. 2004;24(20):4889–93.CrossRefPubMed
11.
go back to reference Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J. 2011;30(14):2908–19.PubMedCentralCrossRefPubMed Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J. 2011;30(14):2908–19.PubMedCentralCrossRefPubMed
12.
go back to reference Foldy C, Malenka RC, Sudhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron. 2013;78(3):498–509.PubMedCentralCrossRefPubMed Foldy C, Malenka RC, Sudhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron. 2013;78(3):498–509.PubMedCentralCrossRefPubMed
13.
go back to reference Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res. 2014;7(2):264–72.PubMedCentralCrossRefPubMed Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res. 2014;7(2):264–72.PubMedCentralCrossRefPubMed
14.
go back to reference Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M, et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A. 2011;108(33):13764–9.PubMedCentralCrossRefPubMed Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M, et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A. 2011;108(33):13764–9.PubMedCentralCrossRefPubMed
15.
go back to reference Chadman KK, Gong S, Scattoni ML, Boltuck SE, Gandhy SU, Heintz N, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res. 2008;1(3):147–58.PubMedCentralCrossRefPubMed Chadman KK, Gong S, Scattoni ML, Boltuck SE, Gandhy SU, Heintz N, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res. 2008;1(3):147–58.PubMedCentralCrossRefPubMed
16.
go back to reference Argyropoulos A, Gilby KL, Hill-Yardin EL. Studying autism in rodent models: reconciling endophenotypes with comorbidities. Front Hum Neurosci. 2013;7:417.PubMedCentralCrossRefPubMed Argyropoulos A, Gilby KL, Hill-Yardin EL. Studying autism in rodent models: reconciling endophenotypes with comorbidities. Front Hum Neurosci. 2013;7:417.PubMedCentralCrossRefPubMed
17.
go back to reference Kanne SM, Mazurek MO. Aggression in children and adolescents with ASD: prevalence and risk factors. J Autism Dev Disord. 2011;41(7):926–37.CrossRefPubMed Kanne SM, Mazurek MO. Aggression in children and adolescents with ASD: prevalence and risk factors. J Autism Dev Disord. 2011;41(7):926–37.CrossRefPubMed
18.
go back to reference Card NA, Little TD. Proactive and reactive aggression in childhood and adolescence: A meta-analysis of differential relations with psychosocial adjustment. Int J Behav Dev. 2006;30:466–80.CrossRef Card NA, Little TD. Proactive and reactive aggression in childhood and adolescence: A meta-analysis of differential relations with psychosocial adjustment. Int J Behav Dev. 2006;30:466–80.CrossRef
19.
go back to reference Sharma A, Shaw SR. Efficacy of risperidone in managing maladaptive behaviors for children with autistic spectrum disorder: a meta-analysis. J Pediatr Health Care. 2012;26(4):291–9.CrossRefPubMed Sharma A, Shaw SR. Efficacy of risperidone in managing maladaptive behaviors for children with autistic spectrum disorder: a meta-analysis. J Pediatr Health Care. 2012;26(4):291–9.CrossRefPubMed
20.
go back to reference Aman MG, Arnold LE, McDougle CJ, Vitiello B, Scahill L, Davies M, et al. Acute and long-term safety and tolerability of risperidone in children with autism. J Child Adolesc Psychopharmacol. 2005;15(6):869–84.CrossRefPubMed Aman MG, Arnold LE, McDougle CJ, Vitiello B, Scahill L, Davies M, et al. Acute and long-term safety and tolerability of risperidone in children with autism. J Child Adolesc Psychopharmacol. 2005;15(6):869–84.CrossRefPubMed
21.
go back to reference Canitano R, Scandurra V. Risperidone in the treatment of behavioral disorders associated with autism in children and adolescents. Neuropsychiatr Dis Treat. 2008;4(4):723–30.PubMedCentralCrossRefPubMed Canitano R, Scandurra V. Risperidone in the treatment of behavioral disorders associated with autism in children and adolescents. Neuropsychiatr Dis Treat. 2008;4(4):723–30.PubMedCentralCrossRefPubMed
22.
go back to reference Lemmon ME, Gregas M, Jeste SS. Risperidone use in autism spectrum disorders: a retrospective review of a clinic-referred patient population. J Child Neurol. 2011;26(4):428–32.CrossRefPubMed Lemmon ME, Gregas M, Jeste SS. Risperidone use in autism spectrum disorders: a retrospective review of a clinic-referred patient population. J Child Neurol. 2011;26(4):428–32.CrossRefPubMed
23.
go back to reference Miczek KA, Maxson SC, Fish EW, Faccidomo S. Aggressive behavioral phenotypes in mice. Behav Brain Res. 2001;125(1–2):167–81.CrossRefPubMed Miczek KA, Maxson SC, Fish EW, Faccidomo S. Aggressive behavioral phenotypes in mice. Behav Brain Res. 2001;125(1–2):167–81.CrossRefPubMed
24.
go back to reference Miczek KA, Fish EW, De Bold JF. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav. 2003;44(3):242–57.CrossRefPubMed Miczek KA, Fish EW, De Bold JF. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav. 2003;44(3):242–57.CrossRefPubMed
25.
go back to reference Miczek KA, Fish EW, De Bold JF, De Almeida RM. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl). 2002;163(3–4):434–58.CrossRef Miczek KA, Fish EW, De Bold JF, De Almeida RM. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl). 2002;163(3–4):434–58.CrossRef
26.
go back to reference Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry. 2001;49(8):655–64.CrossRefPubMed Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry. 2001;49(8):655–64.CrossRefPubMed
27.
go back to reference Pearson BL, Pobbe RL, Defensor EB, Oasay L, Bolivar VJ, Blanchard DC, et al. Motor and cognitive stereotypies in the BTBR T + tf/J mouse model of autism. Genes Brain Behav. 2011;10(2):228–35.PubMedCentralCrossRefPubMed Pearson BL, Pobbe RL, Defensor EB, Oasay L, Bolivar VJ, Blanchard DC, et al. Motor and cognitive stereotypies in the BTBR T + tf/J mouse model of autism. Genes Brain Behav. 2011;10(2):228–35.PubMedCentralCrossRefPubMed
28.
go back to reference Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci. 2011;Chapter 8:Unit 8 26.PubMed Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci. 2011;Chapter 8:Unit 8 26.PubMed
29.
go back to reference Yang M, Crawley JN. Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci. 2009;Chapter 8:Unit 8 24.PubMed Yang M, Crawley JN. Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci. 2009;Chapter 8:Unit 8 24.PubMed
30.
go back to reference Velez L, Sokoloff G, Miczek KA, Palmer AA, Dulawa SC. Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains. Behav Genet. 2010;40(2):201–10.PubMedCentralCrossRefPubMed Velez L, Sokoloff G, Miczek KA, Palmer AA, Dulawa SC. Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains. Behav Genet. 2010;40(2):201–10.PubMedCentralCrossRefPubMed
31.
go back to reference Burrows EL, Hannan AJ. Characterizing social behavior in genetically targeted mouse models of brain disorders. Methods Mol Biol. 2013;1017:95–104.CrossRefPubMed Burrows EL, Hannan AJ. Characterizing social behavior in genetically targeted mouse models of brain disorders. Methods Mol Biol. 2013;1017:95–104.CrossRefPubMed
32.
go back to reference Bespalov A, Jongen-Relo AL, van Gaalen M, Harich S, Schoemaker H, Gross G. Habituation deficits induced by metabotropic glutamate receptors 2/3 receptor blockade in mice: reversal by antipsychotic drugs. J Pharmacol Exp Ther. 2007;320(2):944–50.CrossRefPubMed Bespalov A, Jongen-Relo AL, van Gaalen M, Harich S, Schoemaker H, Gross G. Habituation deficits induced by metabotropic glutamate receptors 2/3 receptor blockade in mice: reversal by antipsychotic drugs. J Pharmacol Exp Ther. 2007;320(2):944–50.CrossRefPubMed
33.
go back to reference Rogoz Z. Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice. Pharmacol Rep. 2010;62(6):1191–6.CrossRefPubMed Rogoz Z. Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice. Pharmacol Rep. 2010;62(6):1191–6.CrossRefPubMed
34.
go back to reference Rogoz Z, Kabzinski M. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice. Pharmacol Rep. 2011;63(6):1533–8.CrossRefPubMed Rogoz Z, Kabzinski M. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice. Pharmacol Rep. 2011;63(6):1533–8.CrossRefPubMed
35.
go back to reference Siuciak JA, McCarthy SA, Martin AN, Chapin DS, Stock J, Nadeau DM, et al. Disruption of the neurokinin-3 receptor (NK3) in mice leads to cognitive deficits. Psychopharmacology (Berl). 2007;194(2):185–95.CrossRef Siuciak JA, McCarthy SA, Martin AN, Chapin DS, Stock J, Nadeau DM, et al. Disruption of the neurokinin-3 receptor (NK3) in mice leads to cognitive deficits. Psychopharmacology (Berl). 2007;194(2):185–95.CrossRef
36.
go back to reference Bradford AM, Savage KM, Jones DN, Kalinichev M. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacology (Berl). 2010;212(2):155–70.CrossRef Bradford AM, Savage KM, Jones DN, Kalinichev M. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacology (Berl). 2010;212(2):155–70.CrossRef
37.
go back to reference Rodriguez-Arias M, Broseta I, Aguilar MA, Minarro J. Lack of specific effects of selective D(1) and D(2) dopamine antagonists vs. risperidone on morphine-induced hyperactivity. Pharmacol Biochem Behav. 2000;66(1):189–97.CrossRefPubMed Rodriguez-Arias M, Broseta I, Aguilar MA, Minarro J. Lack of specific effects of selective D(1) and D(2) dopamine antagonists vs. risperidone on morphine-induced hyperactivity. Pharmacol Biochem Behav. 2000;66(1):189–97.CrossRefPubMed
38.
go back to reference Cleves M, Gould W, Gutierrez R, Marchenko Y. An introduction to survival analysis using STATA.2nd ed. College Station, TX: StataCorp LP; 2008. Cleves M, Gould W, Gutierrez R, Marchenko Y. An introduction to survival analysis using STATA.2nd ed. College Station, TX: StataCorp LP; 2008.
39.
go back to reference Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012;4(131):131ra51.CrossRefPubMed Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012;4(131):131ra51.CrossRefPubMed
40.
go back to reference Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med. 2011;3(103):103ra97.PubMedCentralCrossRefPubMed Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med. 2011;3(103):103ra97.PubMedCentralCrossRefPubMed
41.
go back to reference McDougle CJ, Scahill L, McCracken JT, Aman MG, Tierney E, Arnold LE, et al. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background and rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am. 2000;9(1):201–24.PubMed McDougle CJ, Scahill L, McCracken JT, Aman MG, Tierney E, Arnold LE, et al. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background and rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am. 2000;9(1):201–24.PubMed
42.
go back to reference McDougle CJ, Stigler KA, Erickson CA, Posey DJ. Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders. J Clin Psychiatry. 2008;69 Suppl 4:15–20.PubMed McDougle CJ, Stigler KA, Erickson CA, Posey DJ. Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders. J Clin Psychiatry. 2008;69 Suppl 4:15–20.PubMed
43.
go back to reference Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell. 2014;158(1):198–212.PubMedCentralCrossRefPubMed Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell. 2014;158(1):198–212.PubMedCentralCrossRefPubMed
44.
go back to reference Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a neuroligin3 R451C knockin mouse model associated with autism. Autism Res. 2011;4(5):368–76.CrossRefPubMed Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a neuroligin3 R451C knockin mouse model associated with autism. Autism Res. 2011;4(5):368–76.CrossRefPubMed
45.
go back to reference Kumar M, Duda JT, Hwang WT, Kenworthy C, Ittyerah R, Pickup S, et al. High resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder. PLoS One. 2014;9(10), e109872.PubMedCentralCrossRefPubMed Kumar M, Duda JT, Hwang WT, Kenworthy C, Ittyerah R, Pickup S, et al. High resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder. PLoS One. 2014;9(10), e109872.PubMedCentralCrossRefPubMed
46.
go back to reference Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, et al. Aberrant striatal functional connectivity in children with autism. Biol Psychiatry. 2011;69(9):847–56.PubMedCentralCrossRefPubMed Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, et al. Aberrant striatal functional connectivity in children with autism. Biol Psychiatry. 2011;69(9):847–56.PubMedCentralCrossRefPubMed
47.
go back to reference Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry. 2005;58(3):226–32.CrossRefPubMed Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry. 2005;58(3):226–32.CrossRefPubMed
48.
go back to reference Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, et al. Changes in the developmental trajectories of striatum in autism. Biol Psychiatry. 2009;66(4):327–33.CrossRefPubMed Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, et al. Changes in the developmental trajectories of striatum in autism. Biol Psychiatry. 2009;66(4):327–33.CrossRefPubMed
49.
go back to reference Jin HM, Shrestha Muna S, Bagalkot TR, Cui Y, Yadav BK, Chung YC. The effects of social defeat on behavior and dopaminergic markers in mice. Neuroscience. 2015;288:167–77.CrossRefPubMed Jin HM, Shrestha Muna S, Bagalkot TR, Cui Y, Yadav BK, Chung YC. The effects of social defeat on behavior and dopaminergic markers in mice. Neuroscience. 2015;288:167–77.CrossRefPubMed
50.
go back to reference Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry. 2008;13(1):27–35.CrossRefPubMed Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry. 2008;13(1):27–35.CrossRefPubMed
51.
go back to reference Sakaue M, Ago Y, Sowa C, Sakamoto Y, Nishihara B, Koyama Y, et al. Modulation by 5-HT2A receptors of aggressive behavior in isolated mice. Jpn J Pharmacol. 2002;89(1):89–92.CrossRefPubMed Sakaue M, Ago Y, Sowa C, Sakamoto Y, Nishihara B, Koyama Y, et al. Modulation by 5-HT2A receptors of aggressive behavior in isolated mice. Jpn J Pharmacol. 2002;89(1):89–92.CrossRefPubMed
52.
go back to reference White SM, Kucharik RF, Moyer JA. Effects of serotonergic agents on isolation-induced aggression. Pharmacol Biochem Behav. 1991;39(3):729–36.CrossRefPubMed White SM, Kucharik RF, Moyer JA. Effects of serotonergic agents on isolation-induced aggression. Pharmacol Biochem Behav. 1991;39(3):729–36.CrossRefPubMed
53.
go back to reference Couppis M, Kennedy C. The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology. 2008;197(3):449–56.CrossRefPubMed Couppis M, Kennedy C. The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology. 2008;197(3):449–56.CrossRefPubMed
54.
go back to reference Schwartzer JJ, Melloni RHJ. Dopamine activity in the lateral anterior hypothalamus modulates AAS-induced aggression through D2 but not D5 receptors. Behav Neurosci. 2010;124(5):645–55.PubMedCentralCrossRefPubMed Schwartzer JJ, Melloni RHJ. Dopamine activity in the lateral anterior hypothalamus modulates AAS-induced aggression through D2 but not D5 receptors. Behav Neurosci. 2010;124(5):645–55.PubMedCentralCrossRefPubMed
Metadata
Title
A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice
Authors
Emma L. Burrows
Liliana Laskaris
Lynn Koyama
Leonid Churilov
Joel C. Bornstein
Elisa L. Hill-Yardin
Anthony J. Hannan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2015
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0055-7

Other articles of this Issue 1/2015

Molecular Autism 1/2015 Go to the issue