Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Original research

A method for accurate spatial registration of PET images and histopathology slices

Authors: Tanuj Puri, Anastasia Chalkidou, Rhonda Henley-Smith, Arunabha Roy, Paul R. Barber, Teresa Guerrero-Urbano, Richard Oakley, Ricard Simo, Jean-Pierre Jeannon, Mark McGurk, Edward W. Odell, Michael J. O’Doherty, Paul K. Marsden

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

Accurate alignment between histopathology slices and positron emission tomography (PET) images is important for radiopharmaceutical validation studies. Limited data is available on the registration accuracy that can be achieved between PET and histopathology slices acquired under routine pathology conditions where slices may be non-parallel, non-contiguously cut and of standard block size. The purpose of this study was to demonstrate a method for aligning PET images and histopathology slices acquired from patients with laryngeal cancer and to assess the registration accuracy obtained under these conditions.

Methods

Six subjects with laryngeal cancer underwent a 64Cu-copper-II-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) PET computed tomography (CT) scan prior to total laryngectomy. Sea urchin spines were inserted into the pathology specimen to act as fiducial markers. The specimen was fixed in formalin, as per standard histopathology operating procedures, and was then CT scanned and cut into millimetre-thick tissue slices. A subset of the tissue slices that included both tumour and fiducial markers was taken and embedded in paraffin blocks. Subsequently, microtome sectioning and haematoxylin and eosin staining were performed to produce 5-μm-thick tissue sections for microscopic digitisation. A series of rigid registration procedures was performed between the different imaging modalities (PET; in vivo CT—i.e. the CT component of the PET-CT; ex vivo CT; histology slices) with the ex vivo CT serving as the reference image. In vivo and ex vivo CTs were registered using landmark-based registration. Histopathology and ex vivo CT images were aligned using the sea urchin spines with additional anatomical landmarks where available. Registration errors were estimated using a leave-one-out strategy for in vivo to ex vivo CT and were estimated from the RMS landmark accuracy for histopathology to ex vivo CT.

Results

The mean ± SD accuracy for registration of the in vivo to ex vivo CT images was 2.66 ± 0.66 mm, and the accuracy for registration of histopathology to ex vivo CT was 0.86 ± 0.41 mm. Estimating the PET to in vivo CT registration accuracy to equal the PET-CT alignment accuracy of 1 mm resulted in an overall average registration error between PET and histopathology slices of 3.0 ± 0.7 mm.

Conclusions

We have developed a registration method to align PET images and histopathology slices with an accuracy comparable to the spatial resolution of the PET images.
Literature
1.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:10.1056/NEJMoa1113205.CrossRefPubMed Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:10.​1056/​NEJMoa1113205.CrossRefPubMed
2.
go back to reference Ceritoglu C, Wang L, Selemon LD, Csernansky JG, Miller MI, Ratnanather JT. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images. Front Hum Neurosci. 2010;4:43. doi:10.3389/fnhum.2010.00043.PubMedCentralPubMed Ceritoglu C, Wang L, Selemon LD, Csernansky JG, Miller MI, Ratnanather JT. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images. Front Hum Neurosci. 2010;4:43. doi:10.​3389/​fnhum.​2010.​00043.PubMedCentralPubMed
3.
go back to reference Dauguet J, Delzescaux T, Condé F, Mangin J-F, Ayache N, Hantraye P, et al. Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain. J Neurosci Methods. 2007;164(1):191–204.CrossRefPubMed Dauguet J, Delzescaux T, Condé F, Mangin J-F, Ayache N, Hantraye P, et al. Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain. J Neurosci Methods. 2007;164(1):191–204.CrossRefPubMed
4.
go back to reference Caldas-Magalhaes J, Kasperts N, Kooij N, van den Berg CAT, Terhaard CHJ, Raaijmakers CPJ, et al. Validation of imaging with pathology in laryngeal cancer: accuracy of the registration methodology. Int J Radiat Oncol Biol Phys. 2012;82(2):e289–98.CrossRefPubMed Caldas-Magalhaes J, Kasperts N, Kooij N, van den Berg CAT, Terhaard CHJ, Raaijmakers CPJ, et al. Validation of imaging with pathology in laryngeal cancer: accuracy of the registration methodology. Int J Radiat Oncol Biol Phys. 2012;82(2):e289–98.CrossRefPubMed
5.
go back to reference Ourselin S, Roche A, Subsol G, Pennec X, Ayache N. Reconstructing a 3D structure from serial histological sections. Image Vis Comput. 2001;19(1–2):25–31.CrossRef Ourselin S, Roche A, Subsol G, Pennec X, Ayache N. Reconstructing a 3D structure from serial histological sections. Image Vis Comput. 2001;19(1–2):25–31.CrossRef
6.
go back to reference Schwier M, Böhler T, Hahn HK, Dahmen U, Dirsch O. Registration of histological whole slide images guided by vessel structures. J Pathology Info. 2013. doi:10.4103/2153-3539.109868. Schwier M, Böhler T, Hahn HK, Dahmen U, Dirsch O. Registration of histological whole slide images guided by vessel structures. J Pathology Info. 2013. doi:10.​4103/​2153-3539.​109868.
7.
go back to reference Malandain G, Bardinet E, Nelissen K, Vanduffel W. Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage. 2004;23(1):111–27.CrossRefPubMed Malandain G, Bardinet E, Nelissen K, Vanduffel W. Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage. 2004;23(1):111–27.CrossRefPubMed
8.
go back to reference Shojaii R, Martel AL, editors. Multi-modality fiducial marker for validation of registration of medical images with histology, SPIE medical imaging; international society for optics and photonics. 2010. Shojaii R, Martel AL, editors. Multi-modality fiducial marker for validation of registration of medical images with histology, SPIE medical imaging; international society for optics and photonics. 2010.
9.
go back to reference Ward AD, Crukley C, McKenzie CA, Montreuil J, Gibson E, Romagnoli C, et al. Prostate: registration of digital histopathologic images to in vivo MR images acquired by using endorectal receive coil. Radiology. 2012;263(3):856–64. doi:10.1148/radiol.12102294.CrossRefPubMed Ward AD, Crukley C, McKenzie CA, Montreuil J, Gibson E, Romagnoli C, et al. Prostate: registration of digital histopathologic images to in vivo MR images acquired by using endorectal receive coil. Radiology. 2012;263(3):856–64. doi:10.​1148/​radiol.​12102294.CrossRefPubMed
10.
go back to reference Hughes C, Rouviere O, Mege-Lechevallier F, Souchon R, Prost R, editors. A novel method for 3D prostate MR-histology registration using anatomical landmarks. 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). 2012:2591-2595. IEEE Computer Soc. Los Alamitos, USA. Hughes C, Rouviere O, Mege-Lechevallier F, Souchon R, Prost R, editors. A novel method for 3D prostate MR-histology registration using anatomical landmarks. 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). 2012:2591-2595. IEEE Computer Soc. Los Alamitos, USA.
11.
go back to reference Gibson E, Crukley C, Gaed M, Gómez JA, Moussa M, Chin JL, et al. Registration of prostate histology images to ex vivo MR images via strand-shaped fiducials. J Magn Reson Imaging. 2012;36(6):1402–12. doi:10.1002/jmri.23767.CrossRefPubMed Gibson E, Crukley C, Gaed M, Gómez JA, Moussa M, Chin JL, et al. Registration of prostate histology images to ex vivo MR images via strand-shaped fiducials. J Magn Reson Imaging. 2012;36(6):1402–12. doi:10.​1002/​jmri.​23767.CrossRefPubMed
12.
go back to reference McGrath DM, Vlad RM, Foltz WD, Brock KK. Technical note: fiducial markers for correlation of whole-specimen histopathology with MR imaging at 7 tesla. Med Phys. 2010;37:2321.CrossRefPubMed McGrath DM, Vlad RM, Foltz WD, Brock KK. Technical note: fiducial markers for correlation of whole-specimen histopathology with MR imaging at 7 tesla. Med Phys. 2010;37:2321.CrossRefPubMed
13.
go back to reference Mega MS, Chen SS, Thompson PM, Woods RP, Karaca TJ, Tiwari A, et al. Mapping histology to metabolism: coregistration of stained whole-brain sections to premortem PET in Alzheimer’s disease. NeuroImage. 1997;5(2):147–53.CrossRefPubMed Mega MS, Chen SS, Thompson PM, Woods RP, Karaca TJ, Tiwari A, et al. Mapping histology to metabolism: coregistration of stained whole-brain sections to premortem PET in Alzheimer’s disease. NeuroImage. 1997;5(2):147–53.CrossRefPubMed
14.
go back to reference Edwards PJ, Nijmeh AD, McGurk M, Odell E, Fenlon MR, Marsden PK, et al. Validation of PET imaging by alignment to histology slices. Medical image computing and computer-assisted intervention–MICCAI 2005. Berlin: Springer; 2005. p. 968–75.CrossRef Edwards PJ, Nijmeh AD, McGurk M, Odell E, Fenlon MR, Marsden PK, et al. Validation of PET imaging by alignment to histology slices. Medical image computing and computer-assisted intervention–MICCAI 2005. Berlin: Springer; 2005. p. 968–75.CrossRef
15.
go back to reference Axente M, He J, Bass CP, Hirsch JI, Sundaresan G, Zweit J, et al. Comprehensive approach to coregistration of autoradiography and microscopy images acquired from a set of sequential tissue sections. J Nucl Med. 2011;52(10):1621–9.CrossRefPubMed Axente M, He J, Bass CP, Hirsch JI, Sundaresan G, Zweit J, et al. Comprehensive approach to coregistration of autoradiography and microscopy images acquired from a set of sequential tissue sections. J Nucl Med. 2011;52(10):1621–9.CrossRefPubMed
16.
go back to reference McCall KC, Humm JL, Bartlett R, Reese M, Carlin S. Copper-64-diacetyl-bis (N (4)-methylthiosemicarbazone) pharmacokinetics in FaDu xenograft tumors and correlation with microscopic markers of hypoxia. Int J Radiat Oncol Biol Phys. 2012;84(3):e393–9.PubMedCentralCrossRefPubMed McCall KC, Humm JL, Bartlett R, Reese M, Carlin S. Copper-64-diacetyl-bis (N (4)-methylthiosemicarbazone) pharmacokinetics in FaDu xenograft tumors and correlation with microscopic markers of hypoxia. Int J Radiat Oncol Biol Phys. 2012;84(3):e393–9.PubMedCentralCrossRefPubMed
17.
go back to reference Takasawa M, Beech JS, Fryer TD, Jones PS, Ahmed T, Smith R, et al. Single-subject statistical mapping of acute brain hypoxia in the rat following middle cerebral artery occlusion: a microPET study. Exp Neurol. 2011;229(2):251–8.CrossRefPubMed Takasawa M, Beech JS, Fryer TD, Jones PS, Ahmed T, Smith R, et al. Single-subject statistical mapping of acute brain hypoxia in the rat following middle cerebral artery occlusion: a microPET study. Exp Neurol. 2011;229(2):251–8.CrossRefPubMed
18.
go back to reference Alic L, Haeck JC, Bol K, Klein S, van Tiel ST, Wielepolski PA, et al. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: image registration approach. PLoS One. 2011;6(8), e22835.PubMedCentralCrossRefPubMed Alic L, Haeck JC, Bol K, Klein S, van Tiel ST, Wielepolski PA, et al. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: image registration approach. PLoS One. 2011;6(8), e22835.PubMedCentralCrossRefPubMed
19.
go back to reference Hughes C, Rouviere O, Mege Lechevallier F, Souchon R, Prost R, editors. Robust alignment of prostate histology slices with quantified accuracy. 2012. Hughes C, Rouviere O, Mege Lechevallier F, Souchon R, Prost R, editors. Robust alignment of prostate histology slices with quantified accuracy. 2012.
20.
go back to reference Rusu M, Golden T, Wang HB, Gow A, Madabhushi A. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model. Medical Physics. 2015;42:4822–4832.CrossRefPubMed Rusu M, Golden T, Wang HB, Gow A, Madabhushi A. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model. Medical Physics. 2015;42:4822–4832.CrossRefPubMed
21.
go back to reference Ou Y, Shen D, Feldman M, Tomaszewski J, Davatzikos C, editors. Non-rigid registration between histological and MR images of the prostate: a joint segmentation and registration framework. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops 2009). IEEE; New York, USA. 2009:188–195. Ou Y, Shen D, Feldman M, Tomaszewski J, Davatzikos C, editors. Non-rigid registration between histological and MR images of the prostate: a joint segmentation and registration framework. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops 2009). IEEE; New York, USA. 2009:188–195.
23.
go back to reference Teras M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J. Performance of the new generation of whole-body PET/CT scanners: discovery STE and discovery VCT. Eur J Nucl Med Mol Imaging. 2007;34(10):1683–92. doi:10.1007/s00259-007-0493-3.CrossRefPubMed Teras M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J. Performance of the new generation of whole-body PET/CT scanners: discovery STE and discovery VCT. Eur J Nucl Med Mol Imaging. 2007;34(10):1683–92. doi:10.​1007/​s00259-007-0493-3.CrossRefPubMed
24.
go back to reference Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, et al. Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol. 2010;170(1):41–9.CrossRefPubMed Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, et al. Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol. 2010;170(1):41–9.CrossRefPubMed
26.
go back to reference Thomas CM, Pike LC, Hartill CE, Baker S, Woods E, Convery DJ, et al. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites. Med Phys. 2014. doi:10.1118/1.4867856.PubMedCentral Thomas CM, Pike LC, Hartill CE, Baker S, Woods E, Convery DJ, et al. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites. Med Phys. 2014. doi:10.​1118/​1.​4867856.PubMedCentral
27.
go back to reference Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler WC, et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 1998;58(17):3765–8.PubMed Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler WC, et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 1998;58(17):3765–8.PubMed
30.
go back to reference Park H, Meyer CR, Wood D, Khan A, Shah R, Hussain H, et al. Validation of automatic target volume definition as demonstrated for 11C-choline PET/CT of human prostate cancer using multi-modality fusion techniques. Acad Radiol. 2010;17(5):614–23.PubMedCentralCrossRefPubMed Park H, Meyer CR, Wood D, Khan A, Shah R, Hussain H, et al. Validation of automatic target volume definition as demonstrated for 11C-choline PET/CT of human prostate cancer using multi-modality fusion techniques. Acad Radiol. 2010;17(5):614–23.PubMedCentralCrossRefPubMed
Metadata
Title
A method for accurate spatial registration of PET images and histopathology slices
Authors
Tanuj Puri
Anastasia Chalkidou
Rhonda Henley-Smith
Arunabha Roy
Paul R. Barber
Teresa Guerrero-Urbano
Richard Oakley
Ricard Simo
Jean-Pierre Jeannon
Mark McGurk
Edward W. Odell
Michael J. O’Doherty
Paul K. Marsden
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0138-7

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue