Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells

Authors: Jiyoun Yeo, Erin L. Crawford, Xiaolu Zhang, Sadik Khuder, Tian Chen, Albert Levin, Thomas M. Blomquist, James C. Willey

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation.

Methods

Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening.

Results

After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96–0.99). The overall classification accuracy was 93% (95% CI 88%–98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone.

Conclusions

The LCRT biomarker reported here displayed high accuracy and ease of implementation on a high throughput, quality-controlled targeted NGS platform. As such, it is optimized for clinical validation in specimens from the ongoing LCRT blinded prospective cohort study. Following validation, the biomarker is expected to have clinical utility by better stratifying subjects for annual lung cancer screening compared to current demographic criteria alone.
Appendix
Available only for authorised users
Literature
2.
go back to reference Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–\409.CrossRefPubMed Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–\409.CrossRefPubMed
3.
go back to reference Humphrey LL, Deffebach M, Pappas M, Baumann C, Artis K, Mitchell JP, Zakher B, Fu R, Slatore CG. Screening for lung cancer with low-dose computed tomography: a systematic review to update the US Preventive services task force recommendation. Ann Intern Med. 2013;159(6):411–20.CrossRefPubMed Humphrey LL, Deffebach M, Pappas M, Baumann C, Artis K, Mitchell JP, Zakher B, Fu R, Slatore CG. Screening for lung cancer with low-dose computed tomography: a systematic review to update the US Preventive services task force recommendation. Ann Intern Med. 2013;159(6):411–20.CrossRefPubMed
4.
go back to reference de Koning HJ, Meza R, Plevritis SK, ten Haaf K, Munshi VN, Jeon J, Erdogan SA, Kong CY, Han SS, van Rosmalen J, et al. Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;160(5):311–20.CrossRefPubMedPubMedCentral de Koning HJ, Meza R, Plevritis SK, ten Haaf K, Munshi VN, Jeon J, Erdogan SA, Kong CY, Han SS, van Rosmalen J, et al. Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;160(5):311–20.CrossRefPubMedPubMedCentral
5.
go back to reference Field JK, Baldwin D, Brain K, Devaraj A, Eisen T, Duffy SW, Hansell DM, Kerr K, Page R, Parmar M, et al. CT screening for lung cancer in the UK: position statement by UKLS investigators following the NLST report. Thorax. 2011;66(8):736–7.CrossRefPubMed Field JK, Baldwin D, Brain K, Devaraj A, Eisen T, Duffy SW, Hansell DM, Kerr K, Page R, Parmar M, et al. CT screening for lung cancer in the UK: position statement by UKLS investigators following the NLST report. Thorax. 2011;66(8):736–7.CrossRefPubMed
6.
go back to reference Tammemagi CM, Pinsky PF, Caporaso NE, Kvale PA, Hocking WG, Church TR, Riley TL, Commins J, Oken MM, Berg CD, et al. Lung Cancer Risk Prediction: Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Models and Validation. J Natl Cancer I. 2011;103(13):1058–68.CrossRef Tammemagi CM, Pinsky PF, Caporaso NE, Kvale PA, Hocking WG, Church TR, Riley TL, Commins J, Oken MM, Berg CD, et al. Lung Cancer Risk Prediction: Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Models and Validation. J Natl Cancer I. 2011;103(13):1058–68.CrossRef
7.
go back to reference Raji OY, Duffy SW, Agbaje OF, Baker SG, Christiani DC, Cassidy A, Field JK. Predictive accuracy of the Liverpool Lung Project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study. Ann Intern Med. 2012;157(4):242–50.CrossRefPubMedPubMedCentral Raji OY, Duffy SW, Agbaje OF, Baker SG, Christiani DC, Cassidy A, Field JK. Predictive accuracy of the Liverpool Lung Project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study. Ann Intern Med. 2012;157(4):242–50.CrossRefPubMedPubMedCentral
8.
go back to reference Kovalchik SA, Tammemagi M, Berg CD, Caporaso NE, Riley TL, Korch M, Silvestri GA, Chaturvedi AK, Katki HA. Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med. 2013;369(3):245–54.CrossRefPubMedPubMedCentral Kovalchik SA, Tammemagi M, Berg CD, Caporaso NE, Riley TL, Korch M, Silvestri GA, Chaturvedi AK, Katki HA. Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med. 2013;369(3):245–54.CrossRefPubMedPubMedCentral
9.
go back to reference Black WC, Gareen IF, Soneji SS, Sicks JD, Keeler EB, Aberle DR, Naeim A, Church TR, Silvestri GA, Gorelick J, et al. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med. 2014;371(19):1793–802.CrossRefPubMedPubMedCentral Black WC, Gareen IF, Soneji SS, Sicks JD, Keeler EB, Aberle DR, Naeim A, Church TR, Silvestri GA, Gorelick J, et al. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med. 2014;371(19):1793–802.CrossRefPubMedPubMedCentral
10.
go back to reference Mauchley DC, Mitchell JD. Current estimate of costs of lung cancer screening in the United States. Thorac Surg Clin. 2015;25(2):205–15.CrossRefPubMed Mauchley DC, Mitchell JD. Current estimate of costs of lung cancer screening in the United States. Thorac Surg Clin. 2015;25(2):205–15.CrossRefPubMed
11.
go back to reference Moyer VA. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(5):330–8.CrossRefPubMed Moyer VA. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(5):330–8.CrossRefPubMed
12.
go back to reference Crawford EL, Khuder SA, Durham SJ, Frampton M, Utell M, Thilly WG, Weaver DA, Ferencak WJ, Jennings CA, Hammersley JR, et al. Normal bronchial epithelial cell expression of glutathione transferase P1, glutathione transferase M3, and glutathione peroxidase is low in subjects with bronchogenic carcinoma. Cancer Res. 2000;60(6):1609–18.PubMed Crawford EL, Khuder SA, Durham SJ, Frampton M, Utell M, Thilly WG, Weaver DA, Ferencak WJ, Jennings CA, Hammersley JR, et al. Normal bronchial epithelial cell expression of glutathione transferase P1, glutathione transferase M3, and glutathione peroxidase is low in subjects with bronchogenic carcinoma. Cancer Res. 2000;60(6):1609–18.PubMed
13.
go back to reference Willey JC, Frampton MW, Utell MJ, Apostolakos MJ, Coy EL, Olson DE, Hammersley JR, Matteson D, Thilly WG. Patterns of gene expression in human airway epithelial cells. Chest. 1997;111(6 Suppl):83S.CrossRefPubMed Willey JC, Frampton MW, Utell MJ, Apostolakos MJ, Coy EL, Olson DE, Hammersley JR, Matteson D, Thilly WG. Patterns of gene expression in human airway epithelial cells. Chest. 1997;111(6 Suppl):83S.CrossRefPubMed
14.
go back to reference Blomquist T, Crawford EL, Mullins D, Yoon Y, Hernandez DA, Khuder S, Ruppel PL, Peters E, Oldfield DJ, Austermiller B, et al. Pattern of Antioxidant and DNA Repair Gene Expression in Normal Airway Epithelium Associated with Lung Cancer Diagnosis. Cancer Res. 2009;69(22):8629–35.CrossRefPubMedPubMedCentral Blomquist T, Crawford EL, Mullins D, Yoon Y, Hernandez DA, Khuder S, Ruppel PL, Peters E, Oldfield DJ, Austermiller B, et al. Pattern of Antioxidant and DNA Repair Gene Expression in Normal Airway Epithelium Associated with Lung Cancer Diagnosis. Cancer Res. 2009;69(22):8629–35.CrossRefPubMedPubMedCentral
15.
go back to reference Mullins DN, Crawford EL, Khuder SA, Hernandez DA, Yoon Y, Willey JC. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma. BMC Cancer. 2005;5:141.CrossRefPubMedPubMedCentral Mullins DN, Crawford EL, Khuder SA, Hernandez DA, Yoon Y, Willey JC. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma. BMC Cancer. 2005;5:141.CrossRefPubMedPubMedCentral
16.
go back to reference Gorlov IP, Byun J, Zhao H, Logothetis CJ, Gorlova OY. Beyond comparing means: the usefulness of analyzing interindividual variation in gene expression for identifying genes associated with cancer development. J Bioinforma Comput Biol. 2012;10(2):1241013.CrossRef Gorlov IP, Byun J, Zhao H, Logothetis CJ, Gorlova OY. Beyond comparing means: the usefulness of analyzing interindividual variation in gene expression for identifying genes associated with cancer development. J Bioinforma Comput Biol. 2012;10(2):1241013.CrossRef
17.
go back to reference Wang X, Chorley BN, Pittman GS, Kleeberger SR, Brothers J 2nd, Liu G, Spira A, Bell DA. Genetic variation and antioxidant response gene expression in the bronchial airway epithelium of smokers at risk for lung cancer. PLoS One. 2010;5(8):eR11934.CrossRef Wang X, Chorley BN, Pittman GS, Kleeberger SR, Brothers J 2nd, Liu G, Spira A, Bell DA. Genetic variation and antioxidant response gene expression in the bronchial airway epithelium of smokers at risk for lung cancer. PLoS One. 2010;5(8):eR11934.CrossRef
18.
go back to reference Qian DC, Han Y, Byun J, Shin HR, Hung RJ, McLaughlin JR, Landi MT, Seminara D, Amos CI. A Novel Pathway-Based Approach Improves Lung Cancer Risk Prediction Using Germline Genetic Variations. Cancer Epidemiol Biomarkers Prev. 2016;25:1208–15. Qian DC, Han Y, Byun J, Shin HR, Hung RJ, McLaughlin JR, Landi MT, Seminara D, Amos CI. A Novel Pathway-Based Approach Improves Lung Cancer Risk Prediction Using Germline Genetic Variations. Cancer Epidemiol Biomarkers Prev. 2016;25:1208–15.
19.
go back to reference Blomquist TM, Brown RD, Crawford EL, de la Serna I, Williams K, Yoon Y, Hernandez DA, Willey JC. CEBPG Exhibits Allele-Specific Expression in Human Bronchial Epithelial Cells. Gene Reg Syst Biol. 2013;7:125–38.CrossRef Blomquist TM, Brown RD, Crawford EL, de la Serna I, Williams K, Yoon Y, Hernandez DA, Willey JC. CEBPG Exhibits Allele-Specific Expression in Human Bronchial Epithelial Cells. Gene Reg Syst Biol. 2013;7:125–38.CrossRef
20.
go back to reference Blomquist TM, Crawford EL, Willey JC. Cis-acting genetic variation at an E2F1/YY1 response site and putative p53 site is associated with altered allele-specific expression of ERCC5 (XPG) transcript in normal human bronchial epithelium. Carcinogenesis. 2010;31(7):1242–50.CrossRefPubMedPubMedCentral Blomquist TM, Crawford EL, Willey JC. Cis-acting genetic variation at an E2F1/YY1 response site and putative p53 site is associated with altered allele-specific expression of ERCC5 (XPG) transcript in normal human bronchial epithelium. Carcinogenesis. 2010;31(7):1242–50.CrossRefPubMedPubMedCentral
21.
go back to reference Crawford EL, Blomquist T, Mullins DN, Yoon Y, Hernandez DR, Al-Bagdhadi M, Ruiz J, Hammersley J, Willey JC. CEBPG regulates ERCC5/XPG expression in human bronchial epithelial cells and this regulation is modified by E2F1/YY1 interactions. Carcinogenesis. 2007;28(12):2552–9.CrossRefPubMed Crawford EL, Blomquist T, Mullins DN, Yoon Y, Hernandez DR, Al-Bagdhadi M, Ruiz J, Hammersley J, Willey JC. CEBPG regulates ERCC5/XPG expression in human bronchial epithelial cells and this regulation is modified by E2F1/YY1 interactions. Carcinogenesis. 2007;28(12):2552–9.CrossRefPubMed
22.
go back to reference Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101(27):10143–8.CrossRefPubMedPubMedCentral Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101(27):10143–8.CrossRefPubMedPubMedCentral
23.
go back to reference Shaykhiev R, Sackrowitz R, Fukui T, Zuo WL, Chao IW, Strulovici-Barel Y, Downey RJ, Crystal RG. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer. Am J Respir Cell Mol Biol. 2013;49(3):418–25.CrossRefPubMedPubMedCentral Shaykhiev R, Sackrowitz R, Fukui T, Zuo WL, Chao IW, Strulovici-Barel Y, Downey RJ, Crystal RG. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer. Am J Respir Cell Mol Biol. 2013;49(3):418–25.CrossRefPubMedPubMedCentral
24.
go back to reference Steiling K, Ryan J, Brody JS, Spira A. The field of tissue injury in the lung and airway. Cancer Prev Res (Phila). 2008;1(6):396–403.CrossRef Steiling K, Ryan J, Brody JS, Spira A. The field of tissue injury in the lung and airway. Cancer Prev Res (Phila). 2008;1(6):396–403.CrossRef
25.
go back to reference Franklin WA, Gazdar AF, Haney J, Wistuba II, La Rosa FG, Kennedy T, Ritchey DM, Miller YE. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest. 1997;100(8):2133–7.CrossRefPubMedPubMedCentral Franklin WA, Gazdar AF, Haney J, Wistuba II, La Rosa FG, Kennedy T, Ritchey DM, Miller YE. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest. 1997;100(8):2133–7.CrossRefPubMedPubMedCentral
26.
go back to reference Wistuba II, Lam S, Behrens C, Virmani AK, Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD, Gazdar AF. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst. 1997;89(18):1366–73.CrossRefPubMedPubMedCentral Wistuba II, Lam S, Behrens C, Virmani AK, Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD, Gazdar AF. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst. 1997;89(18):1366–73.CrossRefPubMedPubMedCentral
27.
go back to reference Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, Parsons E, Mitra N, Brody J, Lenburg ME, et al. A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer. N Engl J Med. 2015;373(3):243–51.CrossRefPubMedPubMedCentral Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, Parsons E, Mitra N, Brody J, Lenburg ME, et al. A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer. N Engl J Med. 2015;373(3):243–51.CrossRefPubMedPubMedCentral
28.
go back to reference Whitney DH, Elashoff MR, Porta-Smith K, Gower AC, Vachani A, Ferguson JS, Silvestri GA, Brody JS, Lenburg ME, Spira A. Derivation of a bronchial genomic classifier for lung cancer in a prospective study of patients undergoing diagnostic bronchoscopy. BMC Med Genet. 2015;8:18. Whitney DH, Elashoff MR, Porta-Smith K, Gower AC, Vachani A, Ferguson JS, Silvestri GA, Brody JS, Lenburg ME, Spira A. Derivation of a bronchial genomic classifier for lung cancer in a prospective study of patients undergoing diagnostic bronchoscopy. BMC Med Genet. 2015;8:18.
29.
go back to reference Blomquist TM, Crawford EL, Lovett JL, Yeo J, Stanoszek LM, Levin A, Li J, Lu M, Shi L, Muldrew K, et al. Targeted RNA-sequencing with competitive multiplex-PCR amplicon libraries. PLoS One. 2013;8(11):e79120.CrossRefPubMedPubMedCentral Blomquist TM, Crawford EL, Lovett JL, Yeo J, Stanoszek LM, Levin A, Li J, Lu M, Shi L, Muldrew K, et al. Targeted RNA-sequencing with competitive multiplex-PCR amplicon libraries. PLoS One. 2013;8(11):e79120.CrossRefPubMedPubMedCentral
30.
go back to reference Crawford EL, Levin A, Safi F, Lu M, Baugh A, Zhang X, Yeo J, Khuder SA, Boulos AM, Nana-Sinkam P, et al. Lung cancer risk test trial: study design, participant baseline characteristics, bronchoscopy safety, and establishment of a biospecimen repository. BMC Pulm Med. 2016;16:16.CrossRefPubMedPubMedCentral Crawford EL, Levin A, Safi F, Lu M, Baugh A, Zhang X, Yeo J, Khuder SA, Boulos AM, Nana-Sinkam P, et al. Lung cancer risk test trial: study design, participant baseline characteristics, bronchoscopy safety, and establishment of a biospecimen repository. BMC Pulm Med. 2016;16:16.CrossRefPubMedPubMedCentral
31.
go back to reference Willey JC, Crawford EL, Jackson CM, Weaver DA, Hoban JC, Khuder SA, DeMuth JP. Expression measurement of many genes simultaneously by quantitative RT-PCR using standardized mixtures of competitive templates. Am J Respir Cell Mol Biol. 1998;19(1):6–17.CrossRefPubMed Willey JC, Crawford EL, Jackson CM, Weaver DA, Hoban JC, Khuder SA, DeMuth JP. Expression measurement of many genes simultaneously by quantitative RT-PCR using standardized mixtures of competitive templates. Am J Respir Cell Mol Biol. 1998;19(1):6–17.CrossRefPubMed
32.
go back to reference Blomquist T, Crawford EL, Yeo J, Zhang X, Willey JC. Control for stochastic sampling variation and qualitative sequencing error in next generation sequencing. Biomol Detect Quantif. 2015;5:30–7.CrossRefPubMedPubMedCentral Blomquist T, Crawford EL, Yeo J, Zhang X, Willey JC. Control for stochastic sampling variation and qualitative sequencing error in next generation sequencing. Biomol Detect Quantif. 2015;5:30–7.CrossRefPubMedPubMedCentral
33.
go back to reference Crawford EL, Warner KA, Khuder SA, Zahorchak RJ, Willey JC. Multiplex standardized RT-PCR for expression analysis of many genes in small samples. Biochem Biophys Res Commun. 2002;293(1):509–16.CrossRefPubMed Crawford EL, Warner KA, Khuder SA, Zahorchak RJ, Willey JC. Multiplex standardized RT-PCR for expression analysis of many genes in small samples. Biochem Biophys Res Commun. 2002;293(1):509–16.CrossRefPubMed
34.
go back to reference Krjutskov K, Andreson R, Magi R, Nikopensius T, Khrunin A, Mihailov E, Tammekivi V, Sork H, Remm M, Metspalu A. Development of a single tube 640-plex genotyping method for detection of nucleic acid variations on microarrays. Nucleic Acids Res. 2008;36(12):e75.CrossRefPubMedPubMedCentral Krjutskov K, Andreson R, Magi R, Nikopensius T, Khrunin A, Mihailov E, Tammekivi V, Sork H, Remm M, Metspalu A. Development of a single tube 640-plex genotyping method for detection of nucleic acid variations on microarrays. Nucleic Acids Res. 2008;36(12):e75.CrossRefPubMedPubMedCentral
35.
go back to reference van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45(3):67.CrossRef van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45(3):67.CrossRef
36.
go back to reference Little RJA. Missing-Data Adjustments in Large Surveys. J Bus Econ Stat. 1988;6(3):287–96. Little RJA. Missing-Data Adjustments in Large Surveys. J Bus Econ Stat. 1988;6(3):287–96.
37.
go back to reference Rubin DB. Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations. J Bus Econ Stat. 1986;4(1):87–94. Rubin DB. Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations. J Bus Econ Stat. 1986;4(1):87–94.
38.
go back to reference Ahdesmaki M, Strimmer K. Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann Appl Stat. 2010:503–19. Ahdesmaki M, Strimmer K. Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann Appl Stat. 2010:503–19.
39.
40.
go back to reference Tammemägi MC, Church TR, Hocking WG, Silvestri GA, Kvale PA, Riley TL, Commins J, Berg CD. Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts. PLoS Med. 2014;11(12):e1001764.CrossRefPubMedPubMedCentral Tammemägi MC, Church TR, Hocking WG, Silvestri GA, Kvale PA, Riley TL, Commins J, Berg CD. Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts. PLoS Med. 2014;11(12):e1001764.CrossRefPubMedPubMedCentral
41.
go back to reference Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ. A Risk Model for Prediction of Lung Cancer. J Natl Cancer Inst. 2007;99(9):715–26.CrossRefPubMed Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ. A Risk Model for Prediction of Lung Cancer. J Natl Cancer Inst. 2007;99(9):715–26.CrossRefPubMed
42.
go back to reference Yang P, Wang Y, Wampfler JA, Xie D, Stoddard SM, She J, Midthun DE. Trends in Subpopulations at High Risk for Lung Cancer. J Thorac Oncol. 2016;11(2):194–202.CrossRefPubMedPubMedCentral Yang P, Wang Y, Wampfler JA, Xie D, Stoddard SM, She J, Midthun DE. Trends in Subpopulations at High Risk for Lung Cancer. J Thorac Oncol. 2016;11(2):194–202.CrossRefPubMedPubMedCentral
43.
go back to reference Katki HA, Kovalchik SA, Berg CD, Cheung LC, Chaturvedi AK. Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening. JAMA. 2016;315(21):2300–11.CrossRefPubMedPubMedCentral Katki HA, Kovalchik SA, Berg CD, Cheung LC, Chaturvedi AK. Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening. JAMA. 2016;315(21):2300–11.CrossRefPubMedPubMedCentral
44.
go back to reference Tammemagi MC, Katki HA, Hocking WG, Church TR, Caporaso N, Kvale PA, Chaturvedi AK, Silvestri GA, Riley TL, Commins J, et al. Selection criteria for lung-cancer screening. N Engl J Med. 2013;368(8):728–36.CrossRefPubMedPubMedCentral Tammemagi MC, Katki HA, Hocking WG, Church TR, Caporaso N, Kvale PA, Chaturvedi AK, Silvestri GA, Riley TL, Commins J, et al. Selection criteria for lung-cancer screening. N Engl J Med. 2013;368(8):728–36.CrossRefPubMedPubMedCentral
45.
go back to reference Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.CrossRefPubMed Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.CrossRefPubMed
46.
go back to reference Zhang X, Crawford EL, Blomquist TM, Khuder SA, Yeo J, Levin AM, Willey JC. Haplotype and diplotype analyses of variation in ERCC5 transcription cis-regulation in normal bronchial epithelial cells. Physiol Genomics. 2016;48(7):537–43.CrossRefPubMed Zhang X, Crawford EL, Blomquist TM, Khuder SA, Yeo J, Levin AM, Willey JC. Haplotype and diplotype analyses of variation in ERCC5 transcription cis-regulation in normal bronchial epithelial cells. Physiol Genomics. 2016;48(7):537–43.CrossRefPubMed
47.
go back to reference DeMuth JP, Jackson CM, Weaver DA, Crawford EL, Durzinsky DS, Durham SJ, Zaher A, Phillips ER, Khuder SA, Willey JC. The gene expression index c-myc x E2F-1/p21 is highly predictive of malignant phenotype in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1998;19(1):18–24.CrossRefPubMed DeMuth JP, Jackson CM, Weaver DA, Crawford EL, Durzinsky DS, Durham SJ, Zaher A, Phillips ER, Khuder SA, Willey JC. The gene expression index c-myc x E2F-1/p21 is highly predictive of malignant phenotype in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1998;19(1):18–24.CrossRefPubMed
48.
go back to reference Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, Asimacopoulos PJ, Agnantis N, Kittas C, Papavassiliou AG. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198(2):142–56.CrossRefPubMed Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, Asimacopoulos PJ, Agnantis N, Kittas C, Papavassiliou AG. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198(2):142–56.CrossRefPubMed
49.
go back to reference Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–81.CrossRefPubMed Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–81.CrossRefPubMed
51.
go back to reference Sasaki H, Suzuki A, Shitara M, Okuda K, Hikosaka Y, Moriyama S, Yano M, Fujii Y. Keap1 mutations in lung cancer patients. Oncol Lett. 2013;6(3):719–21.PubMedPubMedCentral Sasaki H, Suzuki A, Shitara M, Okuda K, Hikosaka Y, Moriyama S, Yano M, Fujii Y. Keap1 mutations in lung cancer patients. Oncol Lett. 2013;6(3):719–21.PubMedPubMedCentral
52.
go back to reference Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, et al. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer. 2010;16(14):3743–53.CrossRef Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, et al. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer. 2010;16(14):3743–53.CrossRef
53.
go back to reference The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRefPubMedCentral The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRefPubMedCentral
54.
go back to reference Takahashi T, Sonobe M, Menju T, Nakayama E, Mino N, Iwakiri S, Nagai S, Sato K, Miyahara R, Okubo K, et al. Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer. J Surg Oncol. 2010;101(6):500–6.PubMed Takahashi T, Sonobe M, Menju T, Nakayama E, Mino N, Iwakiri S, Nagai S, Sato K, Miyahara R, Okubo K, et al. Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer. J Surg Oncol. 2010;101(6):500–6.PubMed
55.
go back to reference Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(31):12771–5.CrossRefPubMedPubMedCentral Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(31):12771–5.CrossRefPubMedPubMedCentral
56.
go back to reference Rekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathology. 2011;24(10):1348–59.CrossRef Rekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathology. 2011;24(10):1348–59.CrossRef
57.
go back to reference Consortium GT. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science (New York, NY). 2015;348(6235):648–60.CrossRef Consortium GT. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science (New York, NY). 2015;348(6235):648–60.CrossRef
Metadata
Title
A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells
Authors
Jiyoun Yeo
Erin L. Crawford
Xiaolu Zhang
Sadik Khuder
Tian Chen
Albert Levin
Thomas M. Blomquist
James C. Willey
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3287-4

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine