Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2015

Open Access 01-12-2015 | Research

A hypomorphic BMPR1B mutation causes du Pan acromesomelic dysplasia

Authors: Katja Stange, Julie Désir, Naseebullah Kakar, Thomas D. Mueller, Birgit S. Budde, Christopher T. Gordon, Denise Horn, Petra Seemann, Guntram Borck

Published in: Orphanet Journal of Rare Diseases | Issue 1/2015

Login to get access

Abstract

Background

Grebe dysplasia, Hunter-Thompson dysplasia, and du Pan dysplasia constitute a spectrum of skeletal dysplasias inherited as an autosomal recessive trait characterized by short stature, severe acromesomelic shortening of the limbs, and normal axial skeleton. The majority of patients with these disorders have biallelic loss-of-function mutations of GDF5. In single instances, Grebe dysplasia and a Grebe dysplasia-like phenotype with genital anomalies have been shown to be caused by mutations in BMPR1B, encoding a GDF5 receptor.

Methods

We clinically and radiologically characterised an acromesomelic chondrodysplasia in an adult woman born to consanguineous parents. We sequenced GDF5 and BMPR1B on DNA of the proposita. We performed 3D structural analysis and luciferase reporter assays to functionally investigate the identified BMPR1B mutation.

Results

We extend the genotype-phenotype correlation in the acromesomelic chondrodysplasias by showing that the milder du Pan dysplasia can be caused by a hypomorphic BMPR1B mutation. We show that the homozygous c.91C>T, p.(Arg31Cys) mutation causing du Pan dysplasia leads to a significant loss of BMPR1B function, but to a lesser extent than the previously reported p.Cys53Arg mutation that results in the more severe Grebe dysplasia.

Conclusions

The phenotypic severity gradient of the clinically and radiologically related acromesomelic chondrodysplasia spectrum of skeletal disorders may be due to the extent of functional impairment of the ligand-receptor pair GDF5-BMPR1B.
Literature
2.
go back to reference Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943–68.PubMedCrossRef Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943–68.PubMedCrossRef
3.
go back to reference Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet. 1997;17(1):58–64.PubMedCrossRef Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet. 1997;17(1):58–64.PubMedCrossRef
4.
go back to reference Faiyaz-Ul-Haque M, Ahmad W, Zaidi SH, Haque S, Teebi AS, Ahmad M, et al. Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin Genet. 2002;61(6):454–8.PubMedCrossRef Faiyaz-Ul-Haque M, Ahmad W, Zaidi SH, Haque S, Teebi AS, Ahmad M, et al. Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin Genet. 2002;61(6):454–8.PubMedCrossRef
5.
go back to reference Faiyaz-Ul-Haque M, Ahmad W, Wahab A, Haque S, Azim AC, Zaidi SH, et al. Frameshift mutation in the cartilage-derived morphogenetic protein 1 (CDMP1) gene and severe acromesomelic chondrodysplasia resembling Grebe-type chondrodysplasia. Am J Med Genet. 2002;111(1):31–7.PubMedCrossRef Faiyaz-Ul-Haque M, Ahmad W, Wahab A, Haque S, Azim AC, Zaidi SH, et al. Frameshift mutation in the cartilage-derived morphogenetic protein 1 (CDMP1) gene and severe acromesomelic chondrodysplasia resembling Grebe-type chondrodysplasia. Am J Med Genet. 2002;111(1):31–7.PubMedCrossRef
6.
go back to reference Stelzer C, Winterpacht A, Spranger J, Zabel B. Grebe dysplasia and the spectrum of CDMP1 mutations. Pediatr Pathol Mol Med. 2003;22(1):77–85.PubMedCrossRef Stelzer C, Winterpacht A, Spranger J, Zabel B. Grebe dysplasia and the spectrum of CDMP1 mutations. Pediatr Pathol Mol Med. 2003;22(1):77–85.PubMedCrossRef
7.
go back to reference Nickel J, Kotzsch A, Sebald W, Mueller TD. A single residue of GDF-5 defines binding specificity to BMP receptor IB. J Mol Biol. 2005;349(5):933–47.PubMedCrossRef Nickel J, Kotzsch A, Sebald W, Mueller TD. A single residue of GDF-5 defines binding specificity to BMP receptor IB. J Mol Biol. 2005;349(5):933–47.PubMedCrossRef
8.
go back to reference Demirhan O, Turkmen S, Schwabe GC, Soyupak S, Akgul E, Tastemir D, et al. A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies. J Med Genet. 2005;42(4):314–7.PubMedCentralPubMedCrossRef Demirhan O, Turkmen S, Schwabe GC, Soyupak S, Akgul E, Tastemir D, et al. A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies. J Med Genet. 2005;42(4):314–7.PubMedCentralPubMedCrossRef
9.
go back to reference Graul-Neumann LM, Deichsel A, Wille U, Kakar N, Koll R, Bassir C, et al. Homozygous missense and nonsense mutations in BMPR1B cause acromesomelic chondrodysplasia-type Grebe. Eur J Hum Genet. 2014;22(6):726–33.PubMedCentralPubMedCrossRef Graul-Neumann LM, Deichsel A, Wille U, Kakar N, Koll R, Bassir C, et al. Homozygous missense and nonsense mutations in BMPR1B cause acromesomelic chondrodysplasia-type Grebe. Eur J Hum Genet. 2014;22(6):726–33.PubMedCentralPubMedCrossRef
10.
go back to reference Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. Allegro, a new computer program for multipoint linkage analysis. Nat Genet. 2000;25(1):12–3.PubMedCrossRef Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. Allegro, a new computer program for multipoint linkage analysis. Nat Genet. 2000;25(1):12–3.PubMedCrossRef
11.
go back to reference Thiele H, Nürnberg P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics. 2005;21(8):1730–2.PubMedCrossRef Thiele H, Nürnberg P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics. 2005;21(8):1730–2.PubMedCrossRef
12.
go back to reference Rüschendorf F, Nürnberg P. ALOHOMORA: a tool for linkage analysis using 10 K SNP array data. Bioinformatics. 2005;21(9):2123–5.PubMedCrossRef Rüschendorf F, Nürnberg P. ALOHOMORA: a tool for linkage analysis using 10 K SNP array data. Bioinformatics. 2005;21(9):2123–5.PubMedCrossRef
13.
go back to reference Kotzsch A, Nickel J, Seher A, Sebald W, Muller TD. Crystal structure analysis reveals a spring-loaded latch as molecular mechanism for GDF-5-type I receptor specificity. EMBO J. 2009;28(7):937–47.PubMedCentralPubMedCrossRef Kotzsch A, Nickel J, Seher A, Sebald W, Muller TD. Crystal structure analysis reveals a spring-loaded latch as molecular mechanism for GDF-5-type I receptor specificity. EMBO J. 2009;28(7):937–47.PubMedCentralPubMedCrossRef
14.
go back to reference Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277(7):4883–91.PubMedCrossRef Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277(7):4883–91.PubMedCrossRef
15.
go back to reference Hampf M, Gossen M. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays. Anal Biochem. 2006;356(1):94–9.PubMedCrossRef Hampf M, Gossen M. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays. Anal Biochem. 2006;356(1):94–9.PubMedCrossRef
16.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.PubMedCentralPubMedCrossRef Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.PubMedCentralPubMedCrossRef
17.
go back to reference Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.PubMedCrossRef Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.PubMedCrossRef
Metadata
Title
A hypomorphic BMPR1B mutation causes du Pan acromesomelic dysplasia
Authors
Katja Stange
Julie Désir
Naseebullah Kakar
Thomas D. Mueller
Birgit S. Budde
Christopher T. Gordon
Denise Horn
Petra Seemann
Guntram Borck
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2015
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-015-0299-5

Other articles of this Issue 1/2015

Orphanet Journal of Rare Diseases 1/2015 Go to the issue