Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling

Authors: Andrea Köhler, Ümmühan Demir, Eva Kickstein, Sybille Krauss, Johanna Aigner, Beatriz Aranda-Orgillés, Antonios I Karagiannidis, Clemens Achmüller, Huajie Bu, Andrea Wunderlich, Michal-Ruth Schweiger, Georg Schaefer, Susann Schweiger, Helmut Klocker, Rainer Schneider

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. Here we investigate the interaction of MID1 and AR.

Methods

AR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively.

Results

The microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner.

Conclusion

Promotion of AR, in addition to enhancement of the Akt-, NFκB-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heinlein CA, Chang C: Androgen receptor in prostate cancer. Endocr Rev. 2004, 25: 276-308. 10.1210/er.2002-0032CrossRefPubMed Heinlein CA, Chang C: Androgen receptor in prostate cancer. Endocr Rev. 2004, 25: 276-308. 10.1210/er.2002-0032CrossRefPubMed
2.
go back to reference American Cancer Society: Cancer Facts and Figures 2010. 2010, Atlanta: American Cancer Society, American Cancer Society: Cancer Facts and Figures 2010. 2010, Atlanta: American Cancer Society,
3.
go back to reference Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011, 19: 575-586. 10.1016/j.ccr.2011.04.008PubMedCentralCrossRefPubMed Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011, 19: 575-586. 10.1016/j.ccr.2011.04.008PubMedCentralCrossRefPubMed
4.
go back to reference Attar RM, Takimoto CH, Gottardis MM: Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009, 15: 3251-3255. 10.1158/1078-0432.CCR-08-1171CrossRefPubMed Attar RM, Takimoto CH, Gottardis MM: Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009, 15: 3251-3255. 10.1158/1078-0432.CCR-08-1171CrossRefPubMed
5.
go back to reference Werner R, Grötsch H, Hiort O: 46, XY disorders of sex development–the undermasculinised male with disorders of androgen action. Best Pract Res Clin Endocrinol Metab. 2010, 24: 263-277. 10.1016/j.beem.2009.11.002CrossRefPubMed Werner R, Grötsch H, Hiort O: 46, XY disorders of sex development–the undermasculinised male with disorders of androgen action. Best Pract Res Clin Endocrinol Metab. 2010, 24: 263-277. 10.1016/j.beem.2009.11.002CrossRefPubMed
6.
go back to reference Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R, Schweiger S: MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet. 2001, 29: 287-294. 10.1038/ng762CrossRefPubMed Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R, Schweiger S: MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet. 2001, 29: 287-294. 10.1038/ng762CrossRefPubMed
7.
go back to reference Schweiger S, Schneider R: The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. Bioessays. 2003, 25: 356-366. 10.1002/bies.10256CrossRefPubMed Schweiger S, Schneider R: The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. Bioessays. 2003, 25: 356-366. 10.1002/bies.10256CrossRefPubMed
8.
go back to reference Collison A, Hatchwell L, Verrills N, Wark PA, de Siqueira AP, Tooze M, Carpenter H, Don AS, Morris JC, Zimmermann N, Bartlett NW, Rothenberg ME, Johnston SL, Foster PS, Mattes J: The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nat Med. 2013, 19: 232-237. 10.1038/nm.3049CrossRefPubMed Collison A, Hatchwell L, Verrills N, Wark PA, de Siqueira AP, Tooze M, Carpenter H, Don AS, Morris JC, Zimmermann N, Bartlett NW, Rothenberg ME, Johnston SL, Foster PS, Mattes J: The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nat Med. 2013, 19: 232-237. 10.1038/nm.3049CrossRefPubMed
9.
go back to reference Prasad S, Ravindran J, Aggarwal BB: NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010, 336: 25-37. 10.1007/s11010-009-0267-2PubMedCentralCrossRefPubMed Prasad S, Ravindran J, Aggarwal BB: NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010, 336: 25-37. 10.1007/s11010-009-0267-2PubMedCentralCrossRefPubMed
10.
go back to reference Andela VB, Gordon AH, Zotalis G, Rosier RN, Goater JJ, Lewis GD, Schwarz EM, Puzas JE, O’Keefe RJ: NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res. 2003, 415 (Supp): S75-S85.CrossRefPubMed Andela VB, Gordon AH, Zotalis G, Rosier RN, Goater JJ, Lewis GD, Schwarz EM, Puzas JE, O’Keefe RJ: NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res. 2003, 415 (Supp): S75-S85.CrossRefPubMed
11.
go back to reference Pandey AV, Mellon SH, Miller WL: Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J Biol Chem. 2003, 278: 2837-2844. 10.1074/jbc.M209527200CrossRefPubMed Pandey AV, Mellon SH, Miller WL: Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J Biol Chem. 2003, 278: 2837-2844. 10.1074/jbc.M209527200CrossRefPubMed
12.
go back to reference Lee DJ, Cha EK, Dubin JM, Beltran H, Chromecki TF, Fajkovic H, Scherr DS, Tagawa ST, Shariat SF: Novel therapeutics for the management of castration-resistant prostate cancer (CRPC). BJU Int. 2012, 109: 968-985. 10.1111/j.1464-410X.2011.10643.xCrossRefPubMed Lee DJ, Cha EK, Dubin JM, Beltran H, Chromecki TF, Fajkovic H, Scherr DS, Tagawa ST, Shariat SF: Novel therapeutics for the management of castration-resistant prostate cancer (CRPC). BJU Int. 2012, 109: 968-985. 10.1111/j.1464-410X.2011.10643.xCrossRefPubMed
13.
go back to reference Krauss S, Foerster J, Schneider R, Schweiger S: Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res. 2008, 68: 4658-4665. 10.1158/0008-5472.CAN-07-6174CrossRefPubMed Krauss S, Foerster J, Schneider R, Schweiger S: Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res. 2008, 68: 4658-4665. 10.1158/0008-5472.CAN-07-6174CrossRefPubMed
14.
go back to reference Porter FD: Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2008, 16: 535-541. 10.1038/ejhg.2008.10CrossRefPubMed Porter FD: Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2008, 16: 535-541. 10.1038/ejhg.2008.10CrossRefPubMed
15.
go back to reference Liu E, Knutzen CA, Krauss S, Schweiger S, Chiang GG: Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci U S A. 2011, 108: 8680-8685. 10.1073/pnas.1100131108PubMedCentralCrossRefPubMed Liu E, Knutzen CA, Krauss S, Schweiger S, Chiang GG: Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci U S A. 2011, 108: 8680-8685. 10.1073/pnas.1100131108PubMedCentralCrossRefPubMed
16.
go back to reference Aranda-Orgilles B, Rutschow D, Zeller R, Karagiannidis AI, Koehler A, Chen C, Wilson T, Krause S, Roepcke S, Lilley D, Schneider R, Schweiger S: The PP2a-Specific Ubiquitin Ligase Mid1 is a Sequence-Dependent Regulator of Translation Efficiency Controlling 3-Phosphoinositide Dependent Protein Kinase-1 (PDPK-1). J Biol Chem. 2011, 286: 39945-39957. 10.1074/jbc.M111.224451PubMedCentralCrossRefPubMed Aranda-Orgilles B, Rutschow D, Zeller R, Karagiannidis AI, Koehler A, Chen C, Wilson T, Krause S, Roepcke S, Lilley D, Schneider R, Schweiger S: The PP2a-Specific Ubiquitin Ligase Mid1 is a Sequence-Dependent Regulator of Translation Efficiency Controlling 3-Phosphoinositide Dependent Protein Kinase-1 (PDPK-1). J Biol Chem. 2011, 286: 39945-39957. 10.1074/jbc.M111.224451PubMedCentralCrossRefPubMed
17.
go back to reference Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, Wu J, Nandula S, Dutta B, Xie Y, Chin YR, Kim DI, Ferris JS, Gruvberger-Saal SK, Laakso M, Wang X, Memeo L, Rojtman A, Matos T, Yu JS, Cordon-Cardo C, Isola J, Terry MB, Toker A, Mills GB, Zhao JJ, Murty VV, Hibshoosh H, Parsons R: 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res. 2009, 69: 6299-6306. 10.1158/0008-5472.CAN-09-0820PubMedCentralCrossRefPubMed Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, Wu J, Nandula S, Dutta B, Xie Y, Chin YR, Kim DI, Ferris JS, Gruvberger-Saal SK, Laakso M, Wang X, Memeo L, Rojtman A, Matos T, Yu JS, Cordon-Cardo C, Isola J, Terry MB, Toker A, Mills GB, Zhao JJ, Murty VV, Hibshoosh H, Parsons R: 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res. 2009, 69: 6299-6306. 10.1158/0008-5472.CAN-09-0820PubMedCentralCrossRefPubMed
18.
go back to reference Krauss S, Griesche N, Jastrzebska E, Chen C, Rutschow D, Achmuller C, Dorn S, Boesch SM, Lalowski M, Wanker E, Schneider R, Schweiger S: Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex. Nat Commun. 2013, 4: 1511-CrossRefPubMed Krauss S, Griesche N, Jastrzebska E, Chen C, Rutschow D, Achmuller C, Dorn S, Boesch SM, Lalowski M, Wanker E, Schneider R, Schweiger S: Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex. Nat Commun. 2013, 4: 1511-CrossRefPubMed
19.
go back to reference Raimondi C, Falasca M: Targeting PDK1 in cancer. Curr Med Chem. 2011, 18: 2763-2769. 10.2174/092986711796011238CrossRefPubMed Raimondi C, Falasca M: Targeting PDK1 in cancer. Curr Med Chem. 2011, 18: 2763-2769. 10.2174/092986711796011238CrossRefPubMed
20.
go back to reference Aranda-Orgillés B, Aigner J, Kunath M, Lurz R, Schneider R, Schweiger S: Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS One. 2008, 3: e3507- 10.1371/journal.pone.0003507PubMedCentralCrossRefPubMed Aranda-Orgillés B, Aigner J, Kunath M, Lurz R, Schneider R, Schweiger S: Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS One. 2008, 3: e3507- 10.1371/journal.pone.0003507PubMedCentralCrossRefPubMed
21.
go back to reference de Mezer M, Wojciechowska M, Napierala M, Sobczak K, Krzyzosiak WJ: Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res. 2011, 39: 3852-3863. 10.1093/nar/gkq1323PubMedCentralCrossRefPubMed de Mezer M, Wojciechowska M, Napierala M, Sobczak K, Krzyzosiak WJ: Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res. 2011, 39: 3852-3863. 10.1093/nar/gkq1323PubMedCentralCrossRefPubMed
22.
go back to reference Baculescu N: The role of androgen receptor activity mediated by the CAG repeat polymorphism in the pathogenesis of PCOS. J Med Life. 2013, 6: 18-25.PubMedCentralPubMed Baculescu N: The role of androgen receptor activity mediated by the CAG repeat polymorphism in the pathogenesis of PCOS. J Med Life. 2013, 6: 18-25.PubMedCentralPubMed
23.
go back to reference Brockschmidt FF, Nothen MM, Hillmer AM: The two most common alleles of the coding GGN repeat in the androgen receptor gene cause differences in protein function. J Mol Endocrinol. 2007, 39: 1-8. 10.1677/JME-06-0072CrossRefPubMed Brockschmidt FF, Nothen MM, Hillmer AM: The two most common alleles of the coding GGN repeat in the androgen receptor gene cause differences in protein function. J Mol Endocrinol. 2007, 39: 1-8. 10.1677/JME-06-0072CrossRefPubMed
24.
go back to reference Choong CS, Kemppainen JA, Zhou ZX, Wilson EM: Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol. 1996, 10: 1527-1535.PubMed Choong CS, Kemppainen JA, Zhou ZX, Wilson EM: Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol. 1996, 10: 1527-1535.PubMed
25.
go back to reference Pfeiffer MJ, Mulders PF, Schalken JA: An in vitro model for preclinical testing of endocrine therapy combinations for prostate cancer. Prostate. 2010, 70: 1524-1532. 10.1002/pros.21187CrossRefPubMed Pfeiffer MJ, Mulders PF, Schalken JA: An in vitro model for preclinical testing of endocrine therapy combinations for prostate cancer. Prostate. 2010, 70: 1524-1532. 10.1002/pros.21187CrossRefPubMed
26.
go back to reference Urbanucci A, Sahu B, Seppala J, Larjo A, Latonen LM, Waltering KK, Tammela TL, Vessella RL, Lahdesmaki H, Janne OA, Visakorpi T: Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene. 2012, 31: 2153-2163. 10.1038/onc.2011.401CrossRefPubMed Urbanucci A, Sahu B, Seppala J, Larjo A, Latonen LM, Waltering KK, Tammela TL, Vessella RL, Lahdesmaki H, Janne OA, Visakorpi T: Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene. 2012, 31: 2153-2163. 10.1038/onc.2011.401CrossRefPubMed
27.
go back to reference Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MC, Wilce JA, Leedman PJ: Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3′-untranslated region of the androgen receptor messenger RNA. J Biol Chem. 2002, 277: 27183-27192. 10.1074/jbc.M202883200CrossRefPubMed Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MC, Wilce JA, Leedman PJ: Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3′-untranslated region of the androgen receptor messenger RNA. J Biol Chem. 2002, 277: 27183-27192. 10.1074/jbc.M202883200CrossRefPubMed
28.
go back to reference Wilce JA, Leedman PJ, Wilce MC: RNA-binding proteins that target the androgen receptor mRNA. IUBMB Life. 2002, 54: 345-349. 10.1080/15216540216033CrossRefPubMed Wilce JA, Leedman PJ, Wilce MC: RNA-binding proteins that target the androgen receptor mRNA. IUBMB Life. 2002, 54: 345-349. 10.1080/15216540216033CrossRefPubMed
29.
go back to reference Cloke B, Shah K, Kaneda H, Lavery S, Trew G, Fusi L, Higham J, Dina RE, Ghaem-Maghami S, Ellis P, Brosens JJ, Christian M: The poly(c)-binding protein-1 regulates expression of the androgen receptor. Endocrinology. 2011, 151: 3954-3964.CrossRef Cloke B, Shah K, Kaneda H, Lavery S, Trew G, Fusi L, Higham J, Dina RE, Ghaem-Maghami S, Ellis P, Brosens JJ, Christian M: The poly(c)-binding protein-1 regulates expression of the androgen receptor. Endocrinology. 2011, 151: 3954-3964.CrossRef
30.
go back to reference Yeap BB, Wilce JA, Leedman PJ: The androgen receptor mRNA. Bioessays. 2004, 26: 672-682. 10.1002/bies.20051CrossRefPubMed Yeap BB, Wilce JA, Leedman PJ: The androgen receptor mRNA. Bioessays. 2004, 26: 672-682. 10.1002/bies.20051CrossRefPubMed
31.
go back to reference van der Steen T, Tindall DJ, Huang H: Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci. 2013, 14: 14833-14859. 10.3390/ijms140714833PubMedCentralCrossRefPubMed van der Steen T, Tindall DJ, Huang H: Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci. 2013, 14: 14833-14859. 10.3390/ijms140714833PubMedCentralCrossRefPubMed
32.
go back to reference Dai JL, Maiorino CA, Gkonos PJ, Burnstein KL: Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells. Steroids. 1996, 61: 531-539. 10.1016/S0039-128X(96)00086-4CrossRefPubMed Dai JL, Maiorino CA, Gkonos PJ, Burnstein KL: Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells. Steroids. 1996, 61: 531-539. 10.1016/S0039-128X(96)00086-4CrossRefPubMed
33.
go back to reference Mora GR, Mahesh VB: Autoregulation of androgen receptor in rat ventral prostate: involvement of c-fos as a negative regulator. Mol Cell Endocrinol. 1996, 124: 111-120. 10.1016/S0303-7207(96)03939-1CrossRefPubMed Mora GR, Mahesh VB: Autoregulation of androgen receptor in rat ventral prostate: involvement of c-fos as a negative regulator. Mol Cell Endocrinol. 1996, 124: 111-120. 10.1016/S0303-7207(96)03939-1CrossRefPubMed
34.
go back to reference Grad JM, Dai JL, Wu S, Burnstein KL: Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Mol Endocrinol. 1999, 13: 1896-1911. 10.1210/mend.13.11.0369CrossRefPubMed Grad JM, Dai JL, Wu S, Burnstein KL: Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Mol Endocrinol. 1999, 13: 1896-1911. 10.1210/mend.13.11.0369CrossRefPubMed
35.
go back to reference Li H, Xu LL, Masuda K, Raymundo E, McLeod DG, Dobi A, Srivastava S: A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells. J Biol Chem. 2008, 283: 28988-28995. 10.1074/jbc.M710528200PubMedCentralCrossRefPubMed Li H, Xu LL, Masuda K, Raymundo E, McLeod DG, Dobi A, Srivastava S: A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells. J Biol Chem. 2008, 283: 28988-28995. 10.1074/jbc.M710528200PubMedCentralCrossRefPubMed
36.
go back to reference Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, Nelson PS, Liu XS, Brown M, Balk SP: Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2010, 20: 457-471.CrossRef Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, Nelson PS, Liu XS, Brown M, Balk SP: Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2010, 20: 457-471.CrossRef
37.
go back to reference Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007, 27: 380-392. 10.1016/j.molcel.2007.05.041PubMedCentralCrossRefPubMed Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007, 27: 380-392. 10.1016/j.molcel.2007.05.041PubMedCentralCrossRefPubMed
38.
go back to reference Lanzino M, Sisci D, Morelli C, Garofalo C, Catalano S, Casaburi I, Capparelli C, Giordano C, Giordano F, Maggiolini M, Ando S: Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells–identification of a novel androgen response element. Nucleic Acids Res. 2010, 38: 5351-5365. 10.1093/nar/gkq278PubMedCentralCrossRefPubMed Lanzino M, Sisci D, Morelli C, Garofalo C, Catalano S, Casaburi I, Capparelli C, Giordano C, Giordano F, Maggiolini M, Ando S: Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells–identification of a novel androgen response element. Nucleic Acids Res. 2010, 38: 5351-5365. 10.1093/nar/gkq278PubMedCentralCrossRefPubMed
39.
go back to reference Garruti G, Wang HH, Bonfrate L, de Bari O, Wang DQ, Portincasa P: A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids. 2012, 2012: 304292-PubMedCentralCrossRefPubMed Garruti G, Wang HH, Bonfrate L, de Bari O, Wang DQ, Portincasa P: A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids. 2012, 2012: 304292-PubMedCentralCrossRefPubMed
40.
go back to reference Nishiyama T, Ikarashi T, Hashimoto Y, Suzuki K, Takahashi K: Association between the dihydrotestosterone level in the prostate and prostate cancer aggressiveness using the Gleason score. J Urol. 2006, 176: 1387-1391. 10.1016/j.juro.2006.06.066CrossRefPubMed Nishiyama T, Ikarashi T, Hashimoto Y, Suzuki K, Takahashi K: Association between the dihydrotestosterone level in the prostate and prostate cancer aggressiveness using the Gleason score. J Urol. 2006, 176: 1387-1391. 10.1016/j.juro.2006.06.066CrossRefPubMed
41.
go back to reference Kratzik C, Womastek I, Bieglmayer C, Schatzl G, Lackner J, Freibauer C, Lunglmayr G: Lower serum total testosterone is associated with lymph node metastases in a radical prostatectomy cohort study. Anticancer Res. 2011, 31: 3615-3618.PubMed Kratzik C, Womastek I, Bieglmayer C, Schatzl G, Lackner J, Freibauer C, Lunglmayr G: Lower serum total testosterone is associated with lymph node metastases in a radical prostatectomy cohort study. Anticancer Res. 2011, 31: 3615-3618.PubMed
42.
go back to reference Schatzl G, Madersbacher S, Thurridl T, Waldmuller J, Kramer G, Haitel A, Marberger M: High-grade prostate cancer is associated with low serum testosterone levels. Prostate. 2001, 47: 52-58. 10.1002/pros.1046CrossRefPubMed Schatzl G, Madersbacher S, Thurridl T, Waldmuller J, Kramer G, Haitel A, Marberger M: High-grade prostate cancer is associated with low serum testosterone levels. Prostate. 2001, 47: 52-58. 10.1002/pros.1046CrossRefPubMed
43.
go back to reference Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell. 2013, 12: 489-498. 10.1111/acel.12075CrossRefPubMed Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell. 2013, 12: 489-498. 10.1111/acel.12075CrossRefPubMed
44.
go back to reference Pasquali R, Gambineri A: Insulin sensitizers in polycystic ovary syndrome. Front Horm Res. 2013, 40: 83-102.CrossRefPubMed Pasquali R, Gambineri A: Insulin sensitizers in polycystic ovary syndrome. Front Horm Res. 2013, 40: 83-102.CrossRefPubMed
45.
go back to reference Jennbacken K, Gustavsson H, Welen K, Vallbo C, Damber JE: Prostate cancer progression into androgen independency is associated with alterations in cell adhesion and invasivity. Prostate. 2006, 66: 1631-1640. 10.1002/pros.20469CrossRefPubMed Jennbacken K, Gustavsson H, Welen K, Vallbo C, Damber JE: Prostate cancer progression into androgen independency is associated with alterations in cell adhesion and invasivity. Prostate. 2006, 66: 1631-1640. 10.1002/pros.20469CrossRefPubMed
46.
go back to reference Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Kohler A, Glossmann H, Schneider R, Sutherland C, Schweiger S: Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A. 2010, 107: 21830-21835. 10.1073/pnas.0912793107PubMedCentralCrossRefPubMed Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Kohler A, Glossmann H, Schneider R, Sutherland C, Schweiger S: Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A. 2010, 107: 21830-21835. 10.1073/pnas.0912793107PubMedCentralCrossRefPubMed
47.
go back to reference Demir U, Koehler A, Schneider R, Schweiger S, Klocker H: Metformin anti-tumor effect via disruption of the MID1 translational regulator complex and AR downregulation in prostate cancer cells. BMC Cancer. 2014, 14: 52- 10.1186/1471-2407-14-52PubMedCentralCrossRefPubMed Demir U, Koehler A, Schneider R, Schweiger S, Klocker H: Metformin anti-tumor effect via disruption of the MID1 translational regulator complex and AR downregulation in prostate cancer cells. BMC Cancer. 2014, 14: 52- 10.1186/1471-2407-14-52PubMedCentralCrossRefPubMed
48.
go back to reference Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B, Matsumoto AM, Simon NI, Wang H, Balk SP: Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 2011, 71: 6503-6513. 10.1158/0008-5472.CAN-11-0532PubMedCentralCrossRefPubMed Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B, Matsumoto AM, Simon NI, Wang H, Balk SP: Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 2011, 71: 6503-6513. 10.1158/0008-5472.CAN-11-0532PubMedCentralCrossRefPubMed
49.
go back to reference Hao JM, Chen JZ, Sui HM, Si-Ma XQ, Li GQ, Liu C, Li JL, Ding YQ, Li JM: A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol. 2010, 220: 475-489.PubMed Hao JM, Chen JZ, Sui HM, Si-Ma XQ, Li GQ, Liu C, Li JL, Ding YQ, Li JM: A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol. 2010, 220: 475-489.PubMed
50.
go back to reference Sakashita S, Li D, Nashima N, Minami Y, Furuya S, Morishita Y, Tachibana K, Sato Y, Noguchi M: Overexpression of immunoglobulin (CD79a) binding protein1 (IGBP-1) in small lung adenocarcinomas and its clinicopathological significance. Pathol Int. 2011, 61: 130-137. 10.1111/j.1440-1827.2011.02644.xCrossRefPubMed Sakashita S, Li D, Nashima N, Minami Y, Furuya S, Morishita Y, Tachibana K, Sato Y, Noguchi M: Overexpression of immunoglobulin (CD79a) binding protein1 (IGBP-1) in small lung adenocarcinomas and its clinicopathological significance. Pathol Int. 2011, 61: 130-137. 10.1111/j.1440-1827.2011.02644.xCrossRefPubMed
51.
go back to reference Bhardwaj A, Singh S, Srivastava SK, Honkanen RE, Reed E, Singh AP: Modulation of protein phosphatase 2A activity alters androgen-independent growth of prostate cancer cells: therapeutic implications. Mol Cancer Ther. 2011, 10: 720-731. 10.1158/1535-7163.MCT-10-1096PubMedCentralCrossRefPubMed Bhardwaj A, Singh S, Srivastava SK, Honkanen RE, Reed E, Singh AP: Modulation of protein phosphatase 2A activity alters androgen-independent growth of prostate cancer cells: therapeutic implications. Mol Cancer Ther. 2011, 10: 720-731. 10.1158/1535-7163.MCT-10-1096PubMedCentralCrossRefPubMed
52.
go back to reference Kloss-Brandstatter A, Schafer G, Erhart G, Huttenhofer A, Coassin S, Seifarth C, Summerer M, Bektic J, Klocker H, Kronenberg F: Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet. 2010, 87: 802-812. 10.1016/j.ajhg.2010.11.001PubMedCentralCrossRefPubMed Kloss-Brandstatter A, Schafer G, Erhart G, Huttenhofer A, Coassin S, Seifarth C, Summerer M, Bektic J, Klocker H, Kronenberg F: Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet. 2010, 87: 802-812. 10.1016/j.ajhg.2010.11.001PubMedCentralCrossRefPubMed
53.
go back to reference Bu H, Schweiger MR, Manke T, Wunderlich A, Timmermann B, Kerick M, Pasqualini L, Shehu E, Fuchsberger C, Cato AC, Klocker H: Anterior gradient 2 and 3–two prototype androgen-responsive genes transcriptionally upregulated by androgens and by oestrogens in prostate cancer cells. FEBS J. 2013, 280: 1249-1266. 10.1111/febs.12118CrossRefPubMed Bu H, Schweiger MR, Manke T, Wunderlich A, Timmermann B, Kerick M, Pasqualini L, Shehu E, Fuchsberger C, Cato AC, Klocker H: Anterior gradient 2 and 3–two prototype androgen-responsive genes transcriptionally upregulated by androgens and by oestrogens in prostate cancer cells. FEBS J. 2013, 280: 1249-1266. 10.1111/febs.12118CrossRefPubMed
54.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10: R25- 10.1186/gb-2009-10-3-r25PubMedCentralCrossRefPubMed Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10: R25- 10.1186/gb-2009-10-3-r25PubMedCentralCrossRefPubMed
55.
go back to reference Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137- 10.1186/gb-2008-9-9-r137PubMedCentralCrossRefPubMed Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137- 10.1186/gb-2008-9-9-r137PubMedCentralCrossRefPubMed
Metadata
Title
A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling
Authors
Andrea Köhler
Ümmühan Demir
Eva Kickstein
Sybille Krauss
Johanna Aigner
Beatriz Aranda-Orgillés
Antonios I Karagiannidis
Clemens Achmüller
Huajie Bu
Andrea Wunderlich
Michal-Ruth Schweiger
Georg Schaefer
Susann Schweiger
Helmut Klocker
Rainer Schneider
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-146

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine