Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia

Authors: Clarissa Amaya, Vittal Kurisetty, Jessica Stiles, Alice M Nyakeriga, Arunkumar Arumugam, Rajkumar Lakshmanaswamy, Cristian E Botez, Dianne C Mitchell, Brad A Bryan

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to “fever range” hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility.

Methods

To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed.

Results

Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells.

Conclusion

These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock.
Appendix
Available only for authorised users
Literature
1.
go back to reference Habash RW, Bansal R, Krewski D, Alhafid HT: Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006, 34 (6): 491-542. 10.1615/CritRevBiomedEng.v34.i6.30.CrossRefPubMed Habash RW, Bansal R, Krewski D, Alhafid HT: Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006, 34 (6): 491-542. 10.1615/CritRevBiomedEng.v34.i6.30.CrossRefPubMed
2.
go back to reference Habash RW, Bansal R, Krewski D, Alhafid HT: Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006, 34 (6): 459-489. 10.1615/CritRevBiomedEng.v34.i6.20.CrossRefPubMed Habash RW, Bansal R, Krewski D, Alhafid HT: Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006, 34 (6): 459-489. 10.1615/CritRevBiomedEng.v34.i6.20.CrossRefPubMed
3.
go back to reference Horsman MR, Overgaard J: Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 2007, 19 (6): 418-426. 10.1016/j.clon.2007.03.015.CrossRef Horsman MR, Overgaard J: Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 2007, 19 (6): 418-426. 10.1016/j.clon.2007.03.015.CrossRef
4.
go back to reference van der Zee J: Heating the patient: a promising approach?. Ann Oncol. 2002, 13 (8): 1173-1184. 10.1093/annonc/mdf280.CrossRefPubMed van der Zee J: Heating the patient: a promising approach?. Ann Oncol. 2002, 13 (8): 1173-1184. 10.1093/annonc/mdf280.CrossRefPubMed
5.
go back to reference Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3 (8): 487-497. 10.1016/S1470-2045(02)00818-5.CrossRefPubMed Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3 (8): 487-497. 10.1016/S1470-2045(02)00818-5.CrossRefPubMed
6.
go back to reference Falk MH, Issels RD: Hyperthermia in oncology. Int J Hyperthermia. 2001, 17 (1): 1-18. 10.1080/02656730150201552.CrossRefPubMed Falk MH, Issels RD: Hyperthermia in oncology. Int J Hyperthermia. 2001, 17 (1): 1-18. 10.1080/02656730150201552.CrossRefPubMed
7.
go back to reference Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu D, Sanders LL, Dewhirst MW: Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol. 2005, 23 (13): 3079-3085. 10.1200/JCO.2005.05.520.CrossRefPubMed Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu D, Sanders LL, Dewhirst MW: Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol. 2005, 23 (13): 3079-3085. 10.1200/JCO.2005.05.520.CrossRefPubMed
8.
go back to reference Moroz P, Jones SK, Gray BN: Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia. 2002, 18 (4): 267-284. 10.1080/02656730110108785.CrossRefPubMed Moroz P, Jones SK, Gray BN: Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia. 2002, 18 (4): 267-284. 10.1080/02656730110108785.CrossRefPubMed
9.
go back to reference Hand JW, Vernon CC, Prior MV: Early experience of a commercial scanned focused ultrasound hyperthermia system. Int J Hyperthermia. 1992, 8 (5): 587-607. 10.3109/02656739209037995.CrossRefPubMed Hand JW, Vernon CC, Prior MV: Early experience of a commercial scanned focused ultrasound hyperthermia system. Int J Hyperthermia. 1992, 8 (5): 587-607. 10.3109/02656739209037995.CrossRefPubMed
10.
go back to reference Gardner RA, Vargas HI, Block JB, Vogel CL, Fenn AJ, Kuehl GV, Doval M: Focused microwave phased array thermotherapy for primary breast cancer. Ann Surg Oncol. 2002, 9 (4): 326-332. 10.1007/BF02573866.CrossRefPubMed Gardner RA, Vargas HI, Block JB, Vogel CL, Fenn AJ, Kuehl GV, Doval M: Focused microwave phased array thermotherapy for primary breast cancer. Ann Surg Oncol. 2002, 9 (4): 326-332. 10.1007/BF02573866.CrossRefPubMed
11.
go back to reference Abe M, Hiraoka M, Takahashi M, Egawa S, Matsuda C, Onoyama Y, Morita K, Kakehi M, Sugahara T: Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy. Cancer. 1986, 58 (8): 1589-1595. 10.1002/1097-0142(19861015)58:8<1589::AID-CNCR2820580802>3.0.CO;2-B.CrossRefPubMed Abe M, Hiraoka M, Takahashi M, Egawa S, Matsuda C, Onoyama Y, Morita K, Kakehi M, Sugahara T: Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy. Cancer. 1986, 58 (8): 1589-1595. 10.1002/1097-0142(19861015)58:8<1589::AID-CNCR2820580802>3.0.CO;2-B.CrossRefPubMed
12.
go back to reference Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T: Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003, 96 (4): 364-369.CrossRefPubMed Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T: Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003, 96 (4): 364-369.CrossRefPubMed
13.
go back to reference Moroi J, Kashiwagi S, Kim S, Urakawa M, Ito H, Yamaguchi K: Regional differences in apoptosis in murine gliosarcoma (T9) induced by mild hyperthermia. Int J Hyperthermia. 1996, 12 (3): 345-354. 10.3109/02656739609022523.CrossRefPubMed Moroi J, Kashiwagi S, Kim S, Urakawa M, Ito H, Yamaguchi K: Regional differences in apoptosis in murine gliosarcoma (T9) induced by mild hyperthermia. Int J Hyperthermia. 1996, 12 (3): 345-354. 10.3109/02656739609022523.CrossRefPubMed
14.
go back to reference Roti Roti JL: Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008, 24 (1): 3-15. 10.1080/02656730701769841.CrossRefPubMed Roti Roti JL: Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008, 24 (1): 3-15. 10.1080/02656730701769841.CrossRefPubMed
15.
go back to reference Kampinga HH, Dynlacht JR, Dikomey E: Mechanism of radiosensitization by hyperthermia (> or?=?43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperthermia. 2004, 20 (2): 131-139. 10.1080/02656730310001627713.CrossRefPubMed Kampinga HH, Dynlacht JR, Dikomey E: Mechanism of radiosensitization by hyperthermia (> or?=?43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperthermia. 2004, 20 (2): 131-139. 10.1080/02656730310001627713.CrossRefPubMed
16.
go back to reference Koutcher JA, Barnett D, Kornblith AB, Cowburn D, Brady TJ, Gerweck LE: Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity. Int J Radiat Oncol Biol Phys. 1990, 18 (6): 1429-1435. 10.1016/0360-3016(90)90318-E.CrossRefPubMed Koutcher JA, Barnett D, Kornblith AB, Cowburn D, Brady TJ, Gerweck LE: Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity. Int J Radiat Oncol Biol Phys. 1990, 18 (6): 1429-1435. 10.1016/0360-3016(90)90318-E.CrossRefPubMed
17.
go back to reference Atanackovic D, Nierhaus A, Neumeier M, Hossfeld DK, Hegewisch-Becker S: 41.8 degrees C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother. 2002, 51 (11–12): 603-613.CrossRefPubMed Atanackovic D, Nierhaus A, Neumeier M, Hossfeld DK, Hegewisch-Becker S: 41.8 degrees C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother. 2002, 51 (11–12): 603-613.CrossRefPubMed
18.
go back to reference Multhoff G: Heat shock protein 72 (HSP72), a hyperthermia-inducible immunogenic determinant on leukemic K562 and Ewing's sarcoma cells. Int J Hyperthermia. 1997, 13 (1): 39-48. 10.3109/02656739709056428.CrossRefPubMed Multhoff G: Heat shock protein 72 (HSP72), a hyperthermia-inducible immunogenic determinant on leukemic K562 and Ewing's sarcoma cells. Int J Hyperthermia. 1997, 13 (1): 39-48. 10.3109/02656739709056428.CrossRefPubMed
19.
go back to reference Milani V, Frankenberger B, Heinz O, Brandl A, Ruhland S, Issels RD, Noessner E: Melanoma-associated antigen tyrosinase but not Melan-A/MART-1 expression and presentation dissociate during the heat shock response. Int Immunol. 2005, 17 (3): 257-268. 10.1093/intimm/dxh203.CrossRefPubMed Milani V, Frankenberger B, Heinz O, Brandl A, Ruhland S, Issels RD, Noessner E: Melanoma-associated antigen tyrosinase but not Melan-A/MART-1 expression and presentation dissociate during the heat shock response. Int Immunol. 2005, 17 (3): 257-268. 10.1093/intimm/dxh203.CrossRefPubMed
20.
go back to reference Tabuchi Y, Wada S, Furusawa Y, Ohtsuka K, Kondo T: Gene networks related to the cell death elicited by hyperthermia in human oral squamous cell carcinoma HSC-3 cells. Int J Mol Med. 2012, 29 (3): 380-386.PubMed Tabuchi Y, Wada S, Furusawa Y, Ohtsuka K, Kondo T: Gene networks related to the cell death elicited by hyperthermia in human oral squamous cell carcinoma HSC-3 cells. Int J Mol Med. 2012, 29 (3): 380-386.PubMed
21.
go back to reference Furusawa Y, Tabuchi Y, Wada S, Takasaki I, Ohtsuka K, Kondo T: Identification of biological functions and gene networks regulated by heat stress in U937 human lymphoma cells. Int J Mol Med. 2011, 28 (2): 143-151.PubMed Furusawa Y, Tabuchi Y, Wada S, Takasaki I, Ohtsuka K, Kondo T: Identification of biological functions and gene networks regulated by heat stress in U937 human lymphoma cells. Int J Mol Med. 2011, 28 (2): 143-151.PubMed
22.
go back to reference Tabuchi Y, Takasaki I, Wada S, Zhao QL, Hori T, Nomura T, Ohtsuka K, Kondo T: Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells. Int J Hyperthermia. 2008, 24 (8): 613-622. 10.1080/02656730802140777.CrossRefPubMed Tabuchi Y, Takasaki I, Wada S, Zhao QL, Hori T, Nomura T, Ohtsuka K, Kondo T: Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells. Int J Hyperthermia. 2008, 24 (8): 613-622. 10.1080/02656730802140777.CrossRefPubMed
23.
go back to reference Boopalan T, Arumugam A, Damodaran C, Rajkumar L: The anticancer effect of 2'-3'-dehydrosalannol on triple-negative breast cancer cells. Anticancer Res. 2012, 32 (7): 2801-2806.PubMed Boopalan T, Arumugam A, Damodaran C, Rajkumar L: The anticancer effect of 2'-3'-dehydrosalannol on triple-negative breast cancer cells. Anticancer Res. 2012, 32 (7): 2801-2806.PubMed
24.
go back to reference Mitchell DC, Abdelrahim M, Weng J, Stafford LJ, Safe S, Bar-Eli M, Liu M: Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem. 2006, 281 (1): 51-58. 10.1074/jbc.M506245200.CrossRefPubMed Mitchell DC, Abdelrahim M, Weng J, Stafford LJ, Safe S, Bar-Eli M, Liu M: Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem. 2006, 281 (1): 51-58. 10.1074/jbc.M506245200.CrossRefPubMed
25.
go back to reference Meng L, Hunt C, Yaglom JA, Gabai VL, Sherman MY: Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene. 2011, 30 (25): 2836-2845. 10.1038/onc.2011.5.CrossRefPubMedPubMedCentral Meng L, Hunt C, Yaglom JA, Gabai VL, Sherman MY: Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene. 2011, 30 (25): 2836-2845. 10.1038/onc.2011.5.CrossRefPubMedPubMedCentral
26.
go back to reference Stiles JM, Amaya C, Rains S, Diaz D, Pham R, Battiste J, Modiano JF, Kokta V, Boucheron LE, Mitchell DC, et al: Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS One. 2013, 8 (3): e60021-10.1371/journal.pone.0060021.CrossRefPubMedPubMedCentral Stiles JM, Amaya C, Rains S, Diaz D, Pham R, Battiste J, Modiano JF, Kokta V, Boucheron LE, Mitchell DC, et al: Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS One. 2013, 8 (3): e60021-10.1371/journal.pone.0060021.CrossRefPubMedPubMedCentral
27.
go back to reference Ito A, Honda H, Kobayashi T: Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother. 2006, 55 (3): 320-328. 10.1007/s00262-005-0049-y.CrossRefPubMed Ito A, Honda H, Kobayashi T: Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother. 2006, 55 (3): 320-328. 10.1007/s00262-005-0049-y.CrossRefPubMed
28.
go back to reference Samali A, Cotter TG: Heat shock proteins increase resistance to apoptosis. Exp Cell Res. 1996, 223 (1): 163-170. 10.1006/excr.1996.0070.CrossRefPubMed Samali A, Cotter TG: Heat shock proteins increase resistance to apoptosis. Exp Cell Res. 1996, 223 (1): 163-170. 10.1006/excr.1996.0070.CrossRefPubMed
29.
go back to reference Beere HM: “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004, 117 (Pt 13): 2641-2651.CrossRefPubMed Beere HM: “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004, 117 (Pt 13): 2641-2651.CrossRefPubMed
30.
go back to reference Ciocca DR, Calderwood SK: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005, 10 (2): 86-103. 10.1379/CSC-99r.1.CrossRefPubMedPubMedCentral Ciocca DR, Calderwood SK: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005, 10 (2): 86-103. 10.1379/CSC-99r.1.CrossRefPubMedPubMedCentral
31.
go back to reference Gyrd-Hansen M, Nylandsted J, Jaattela M: Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle. 2004, 3 (12): 1484-1485. 10.4161/cc.3.12.1287.CrossRefPubMed Gyrd-Hansen M, Nylandsted J, Jaattela M: Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle. 2004, 3 (12): 1484-1485. 10.4161/cc.3.12.1287.CrossRefPubMed
32.
go back to reference Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR: Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer. 1998, 79 (5): 468-475. 10.1002/(SICI)1097-0215(19981023)79:5<468::AID-IJC4>3.0.CO;2-Z.CrossRefPubMed Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR: Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer. 1998, 79 (5): 468-475. 10.1002/(SICI)1097-0215(19981023)79:5<468::AID-IJC4>3.0.CO;2-Z.CrossRefPubMed
33.
go back to reference Mackey MA, Morgan WF, Dewey WC: Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells. Cancer Res. 1988, 48 (22): 6478-6483.PubMed Mackey MA, Morgan WF, Dewey WC: Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells. Cancer Res. 1988, 48 (22): 6478-6483.PubMed
34.
go back to reference Genet SC, Fujii Y, Maeda J, Kaneko M, Genet MD, Miyagawa K, Kato TA: Hyperthermia inhibits homologous recombination repair and sensitizes cells to ionizing radiation in a time and temperature dependent manner. J Cell Physio. 2012, 228 (7): 1473-1481.CrossRef Genet SC, Fujii Y, Maeda J, Kaneko M, Genet MD, Miyagawa K, Kato TA: Hyperthermia inhibits homologous recombination repair and sensitizes cells to ionizing radiation in a time and temperature dependent manner. J Cell Physio. 2012, 228 (7): 1473-1481.CrossRef
35.
go back to reference Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, et al: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci U S A. 2011, 108 (24): 9851-9856. 10.1073/pnas.1101053108.CrossRefPubMedPubMedCentral Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, et al: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci U S A. 2011, 108 (24): 9851-9856. 10.1073/pnas.1101053108.CrossRefPubMedPubMedCentral
36.
go back to reference Eppink B, Krawczyk PM, Stap J, Kanaar R: Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia. 2012, 28 (6): 509-517. 10.3109/02656736.2012.695427.CrossRefPubMed Eppink B, Krawczyk PM, Stap J, Kanaar R: Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia. 2012, 28 (6): 509-517. 10.3109/02656736.2012.695427.CrossRefPubMed
37.
go back to reference Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, et al: Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res. 2007, 67 (7): 3010-3017. 10.1158/0008-5472.CAN-06-4328.CrossRefPubMed Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, et al: Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res. 2007, 67 (7): 3010-3017. 10.1158/0008-5472.CAN-06-4328.CrossRefPubMed
38.
go back to reference Shin H, Lee H, Fejes AP, Baillie DL, Koo HS, Jones SJ: Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC Res Notes. 2011, 4: 34-10.1186/1756-0500-4-34.CrossRefPubMedPubMedCentral Shin H, Lee H, Fejes AP, Baillie DL, Koo HS, Jones SJ: Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC Res Notes. 2011, 4: 34-10.1186/1756-0500-4-34.CrossRefPubMedPubMedCentral
39.
go back to reference Gupta A, Cooper ZA, Tulapurkar ME, Potla R, Maity T, Hasday JD, Singh IS: Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem. 2013, 288 (4): 2756-2766. 10.1074/jbc.M112.427336.CrossRefPubMed Gupta A, Cooper ZA, Tulapurkar ME, Potla R, Maity T, Hasday JD, Singh IS: Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem. 2013, 288 (4): 2756-2766. 10.1074/jbc.M112.427336.CrossRefPubMed
40.
go back to reference Kim H, Heo K, Choi J, Kim K, An W: Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP1gamma. Nucleic Acids Res. 2011, 39 (19): 8329-8341. 10.1093/nar/gkr529.CrossRefPubMedPubMedCentral Kim H, Heo K, Choi J, Kim K, An W: Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP1gamma. Nucleic Acids Res. 2011, 39 (19): 8329-8341. 10.1093/nar/gkr529.CrossRefPubMedPubMedCentral
41.
go back to reference Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE: Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011, 14 (1): 33-44. 10.1016/j.cmet.2011.04.009.CrossRefPubMedPubMedCentral Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE: Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011, 14 (1): 33-44. 10.1016/j.cmet.2011.04.009.CrossRefPubMedPubMedCentral
42.
go back to reference Cohen E, Avrahami D, Frid K, Canello T, Levy Lahad E, Zeligson S, Perlberg S, Chapman J, Cohen OS, Kahana E, et al: Snord 3A: a molecular marker and modulator of prion disease progression. PLoS One. 2013, 8 (1): e54433-10.1371/journal.pone.0054433.CrossRefPubMedPubMedCentral Cohen E, Avrahami D, Frid K, Canello T, Levy Lahad E, Zeligson S, Perlberg S, Chapman J, Cohen OS, Kahana E, et al: Snord 3A: a molecular marker and modulator of prion disease progression. PLoS One. 2013, 8 (1): e54433-10.1371/journal.pone.0054433.CrossRefPubMedPubMedCentral
43.
go back to reference Stepanov GA, Semenov DV, Kuligina EV, Koval OA, Rabinov IV, Kit YY, Richter VA: Analogues of Artificial Human Box C/D Small Nucleolar RNA As Regulators of Alternative Splicing of a pre-mRNA Target. Acta Nat. 2012, 4 (1): 32-41. Stepanov GA, Semenov DV, Kuligina EV, Koval OA, Rabinov IV, Kit YY, Richter VA: Analogues of Artificial Human Box C/D Small Nucleolar RNA As Regulators of Alternative Splicing of a pre-mRNA Target. Acta Nat. 2012, 4 (1): 32-41.
44.
go back to reference Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, et al: Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol. 2008, 180 (3): 563-578. 10.1083/jcb.200709061.CrossRefPubMedPubMedCentral Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, et al: Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol. 2008, 180 (3): 563-578. 10.1083/jcb.200709061.CrossRefPubMedPubMedCentral
45.
go back to reference Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, Rothe B, Pescia C, Robert MC, Kiss T, et al: The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol. 2008, 180 (3): 579-595. 10.1083/jcb.200708110.CrossRefPubMedPubMedCentral Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, Rothe B, Pescia C, Robert MC, Kiss T, et al: The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol. 2008, 180 (3): 579-595. 10.1083/jcb.200708110.CrossRefPubMedPubMedCentral
46.
go back to reference Eckert K, Saliou JM, Monlezun L, Vigouroux A, Atmane N, Caillat C, Quevillon-Cheruel S, Madiona K, Nicaise M, Lazereg S, et al: The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem. 2010, 285 (41): 31304-31312. 10.1074/jbc.M110.138263.CrossRefPubMedPubMedCentral Eckert K, Saliou JM, Monlezun L, Vigouroux A, Atmane N, Caillat C, Quevillon-Cheruel S, Madiona K, Nicaise M, Lazereg S, et al: The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem. 2010, 285 (41): 31304-31312. 10.1074/jbc.M110.138263.CrossRefPubMedPubMedCentral
47.
go back to reference Roti Roti JL: Heat-induced alterations of nuclear protein associations and their effects on DNA repair and replication. Int J Hyperthermia. 2007, 23 (1): 3-15. 10.1080/02656730601091759.CrossRefPubMed Roti Roti JL: Heat-induced alterations of nuclear protein associations and their effects on DNA repair and replication. Int J Hyperthermia. 2007, 23 (1): 3-15. 10.1080/02656730601091759.CrossRefPubMed
48.
go back to reference Mackey MA, Ianzini F: Enhancement of radiation-induced mitotic catastrophe by moderate hyperthermia. Int J Radiat Biol. 2000, 76 (2): 273-280. 10.1080/095530000138925.CrossRefPubMed Mackey MA, Ianzini F: Enhancement of radiation-induced mitotic catastrophe by moderate hyperthermia. Int J Radiat Biol. 2000, 76 (2): 273-280. 10.1080/095530000138925.CrossRefPubMed
49.
go back to reference Debec A, Marcaillou C: Structural alterations of the mitotic apparatus induced by the heat shock response in Drosophila cells. Biol Cell. 1997, 89 (1): 67-78. 10.1016/S0248-4900(99)80082-3.CrossRefPubMed Debec A, Marcaillou C: Structural alterations of the mitotic apparatus induced by the heat shock response in Drosophila cells. Biol Cell. 1997, 89 (1): 67-78. 10.1016/S0248-4900(99)80082-3.CrossRefPubMed
50.
go back to reference Westra A, Dewey WC: Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1971, 19 (5): 467-477. 10.1080/09553007114550601.CrossRefPubMed Westra A, Dewey WC: Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1971, 19 (5): 467-477. 10.1080/09553007114550601.CrossRefPubMed
51.
go back to reference Dewey WC: Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat Res. 1989, 120 (2): 191-204. 10.2307/3577707.CrossRefPubMed Dewey WC: Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat Res. 1989, 120 (2): 191-204. 10.2307/3577707.CrossRefPubMed
52.
go back to reference Coss RA, Dewey WC, Bamburg JR: Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res. 1982, 42 (3): 1059-1071.PubMed Coss RA, Dewey WC, Bamburg JR: Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res. 1982, 42 (3): 1059-1071.PubMed
53.
go back to reference Vidair CA, Dewey WC: Two distinct modes of hyperthermic cell death. Radiat Res. 1988, 116 (1): 157-171. 10.2307/3577486.CrossRefPubMed Vidair CA, Dewey WC: Two distinct modes of hyperthermic cell death. Radiat Res. 1988, 116 (1): 157-171. 10.2307/3577486.CrossRefPubMed
Metadata
Title
A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia
Authors
Clarissa Amaya
Vittal Kurisetty
Jessica Stiles
Alice M Nyakeriga
Arunkumar Arumugam
Rajkumar Lakshmanaswamy
Cristian E Botez
Dianne C Mitchell
Brad A Bryan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-81

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine