Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2018

01-06-2018

A Functional Aryl Hydrocarbon Receptor Genetic Variant, Alone and in Combination with Parental Exposure, is a Risk Factor for Congenital Heart Disease

Authors: Silvia Pulignani, Andrea Borghini, Cecilia Vecoli, Ilenia Foffa, Lamia Ait-Ali, Maria Grazia Andreassi

Published in: Cardiovascular Toxicology | Issue 3/2018

Login to get access

Abstract

Recent experimental studies showed that ablation of the aryl hydrocarbon receptor (AhR) as well as its activation by exogenous ligands disrupt the molecular networks involved in heart formation and function, leading to congenital heart disease (CHD). However, no evidence is available about the role of AhR in humans. We assessed the prevalence of a functional AhR genetic variant (p.Arg554Lys) in CHD patients as well as its joint effects with parental exposure. A total of 128 CHD patients (76 males; age 6.2 ± 6.7 years) and 274 controls (160 males; age at birth) were genotyped for the AhR polymorphism by using the TaqMan® Drug Metabolism Genotyping assay. Both case and control parents completed a structured questionnaire on demographic, lifestyle and preconception exposures. Genotype (p = 0.001) and allele (p < 0.0001) distributions of AhR p.Arg554Lys differed significantly between patients and controls. A significant elevated CHD risk was found under dominant (OR = 2.9, 95% CI 1.9–4.6, p < 0.0001) and additive genetic models (OR = 6.2, 95% CI 2–19, p = 0.001). There was a significant interaction between 554-Lys allele and paternal smoking exposure (ORsmoking = 1.6, 95% CI = 0.9–2.9; ORallele = 2.6, 95% CI = 1.3–5; ORinteraction = 4.9, 95% CI = 2.4–9.9, p interaction < 0.0001). Additionally, 554-Lys allele exacerbated the effect of maternal periconceptional exposure (ORexposure = 1.6, 95% CI = 0.8–3; ORallele = 2.6, 95% CI = 1.5–4.5; ORinteraction = 5.7; 95% CI = 2.6–12, p interaction < 0.0001). Our findings showed that the AhR p.Arg554Lys polymorphism, alone and in combination with parental exposures, is associated with the CHD risk, highlighting the significant role of AhR in the cardiovascular development.
Literature
1.
go back to reference Van der Linde, D., Konings, E. E., Slager, M. A., Witsenburg, M., Helbing, W. A., Takkenberg, J. J., et al. (2011). Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. JACC, 58, 2241–2247.CrossRefPubMed Van der Linde, D., Konings, E. E., Slager, M. A., Witsenburg, M., Helbing, W. A., Takkenberg, J. J., et al. (2011). Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. JACC, 58, 2241–2247.CrossRefPubMed
2.
go back to reference Bouma, B. J., & Mulder, B. J. M. (2017). Changing landscape of congenital heart disease. Circulation Research, 120, 908–922.CrossRefPubMed Bouma, B. J., & Mulder, B. J. M. (2017). Changing landscape of congenital heart disease. Circulation Research, 120, 908–922.CrossRefPubMed
3.
go back to reference Van der Bom, T., Zomer, C. A., Zwinderman, A. H., Meijboom, F. J., Bouma, B. J., & Mulder, B. J. (2011). The changing epidemiology of congenital heart disease. Nature Reviews Cardiology, 8, 50–60.CrossRefPubMed Van der Bom, T., Zomer, C. A., Zwinderman, A. H., Meijboom, F. J., Bouma, B. J., & Mulder, B. J. (2011). The changing epidemiology of congenital heart disease. Nature Reviews Cardiology, 8, 50–60.CrossRefPubMed
4.
go back to reference Sabina, S., Pulignani, S., Rizzo, M., Cresci, M., Vecoli, C., Foffa, I., et al. (2013). Germline hereditary, somatic mutations and microRNAs targeting-SNPs in congenital heart defects. Journal of Molecular and Cellular Cardiology, 60, 84–89.CrossRefPubMed Sabina, S., Pulignani, S., Rizzo, M., Cresci, M., Vecoli, C., Foffa, I., et al. (2013). Germline hereditary, somatic mutations and microRNAs targeting-SNPs in congenital heart defects. Journal of Molecular and Cellular Cardiology, 60, 84–89.CrossRefPubMed
5.
go back to reference Vecoli, C., Pulignani, S., Foffa, I., & Andreassi, M. G. (2014). Congenital heart disease: The crossroads of genetics, epigenetics and environment. Current Genomics, 15, 390–399.CrossRefPubMedPubMedCentral Vecoli, C., Pulignani, S., Foffa, I., & Andreassi, M. G. (2014). Congenital heart disease: The crossroads of genetics, epigenetics and environment. Current Genomics, 15, 390–399.CrossRefPubMedPubMedCentral
6.
go back to reference Donofrio, M. T., Moon-Grady, A. J., Hornberger, L. K., Copel, J. A., Sklansky, M. S., Abuhamad, A., et al. (2014). Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation, 129, 2183–2242.CrossRefPubMed Donofrio, M. T., Moon-Grady, A. J., Hornberger, L. K., Copel, J. A., Sklansky, M. S., Abuhamad, A., et al. (2014). Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation, 129, 2183–2242.CrossRefPubMed
7.
go back to reference Cresci, M., Foffa, I., Ait-Ali, L., Pulignani, S., Gianicolo, E. A., Botto, N., et al. (2011). Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. American Journal of Cardiology, 108, 1625–1631.CrossRefPubMed Cresci, M., Foffa, I., Ait-Ali, L., Pulignani, S., Gianicolo, E. A., Botto, N., et al. (2011). Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. American Journal of Cardiology, 108, 1625–1631.CrossRefPubMed
8.
go back to reference Cresci, M., Vecoli, C., Foffa, I., Pulignani, S., Ait-Ali, L., & Andreassi, M. G. (2013). Lack of association of the 3′-UTR polymorphism (rs1017) in the ISL1 gene and risk of congenital heart disease in the white population. Pediatric Cardiology, 34, 938–941.CrossRefPubMed Cresci, M., Vecoli, C., Foffa, I., Pulignani, S., Ait-Ali, L., & Andreassi, M. G. (2013). Lack of association of the 3′-UTR polymorphism (rs1017) in the ISL1 gene and risk of congenital heart disease in the white population. Pediatric Cardiology, 34, 938–941.CrossRefPubMed
9.
go back to reference Deng, K., Liu, Z., Lin, Y., Mu, D., Chen, X., Li, J., et al. (2013). Periconceptional paternal smoking and the risk of congenital heart defects: A case-control study. Birth Defects Research Part A: Clinical and Molecular Teratology, 97, 210–216.CrossRefPubMed Deng, K., Liu, Z., Lin, Y., Mu, D., Chen, X., Li, J., et al. (2013). Periconceptional paternal smoking and the risk of congenital heart defects: A case-control study. Birth Defects Research Part A: Clinical and Molecular Teratology, 97, 210–216.CrossRefPubMed
10.
go back to reference Wang, C., Xie, L., Zhou, K., Zhan, Y., Li, Y., Li, H., et al. (2013). Increased risk for congenital heart defects in children carrying the ABCB1 Gene C3435T polymorphism and maternal periconceptional toxicants exposure. PLoS One, 8, e68807.CrossRefPubMedPubMedCentral Wang, C., Xie, L., Zhou, K., Zhan, Y., Li, Y., Li, H., et al. (2013). Increased risk for congenital heart defects in children carrying the ABCB1 Gene C3435T polymorphism and maternal periconceptional toxicants exposure. PLoS One, 8, e68807.CrossRefPubMedPubMedCentral
11.
go back to reference Tang, X., Hobbs, C. A., Cleves, M. A., Erickson, S. W., MacLeod, S. L., Malik, S., et al. (2015). Genetic variation affects congenital heart defect susceptibility in offspring exposed to maternal tobacco use. Birth Defects Research Part A: Clinical and Molecular Teratology, 103(10), 834–842.CrossRefPubMedPubMedCentral Tang, X., Hobbs, C. A., Cleves, M. A., Erickson, S. W., MacLeod, S. L., Malik, S., et al. (2015). Genetic variation affects congenital heart defect susceptibility in offspring exposed to maternal tobacco use. Birth Defects Research Part A: Clinical and Molecular Teratology, 103(10), 834–842.CrossRefPubMedPubMedCentral
12.
go back to reference Li, X., Liu, Z., Deng, Y., Li, S., Mu, D., Tian, X., et al. (2015). Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes. Scientific Reports, 5, 14915.CrossRefPubMedPubMedCentral Li, X., Liu, Z., Deng, Y., Li, S., Mu, D., Tian, X., et al. (2015). Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes. Scientific Reports, 5, 14915.CrossRefPubMedPubMedCentral
13.
go back to reference Wang, Y., Fan, Y., & Puga, A. (2010). Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes. Toxicological Sciences, 115, 225–237.CrossRefPubMed Wang, Y., Fan, Y., & Puga, A. (2010). Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes. Toxicological Sciences, 115, 225–237.CrossRefPubMed
14.
go back to reference Wang, Q., Chen, J., Ko, C. I. I., Fan, Y., Carreira, V., Chen, Y., et al. (2013). Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis. Environmental Health Perspectives, 121, 1334–1343.PubMedPubMedCentralCrossRef Wang, Q., Chen, J., Ko, C. I. I., Fan, Y., Carreira, V., Chen, Y., et al. (2013). Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis. Environmental Health Perspectives, 121, 1334–1343.PubMedPubMedCentralCrossRef
15.
go back to reference Wang, Q., Kurita, H., Carreira, V., Ko, C. I., Fan, Y., Zhang, X., et al. (2016). Ah receptor activation by dioxin disrupts activin, BMP, and WNT signals during the early differentiation of mouse embryonic stem cells and inhibits cardiomyocyte functions. Toxicological Sciences, 149(2), 346–357.CrossRefPubMed Wang, Q., Kurita, H., Carreira, V., Ko, C. I., Fan, Y., Zhang, X., et al. (2016). Ah receptor activation by dioxin disrupts activin, BMP, and WNT signals during the early differentiation of mouse embryonic stem cells and inhibits cardiomyocyte functions. Toxicological Sciences, 149(2), 346–357.CrossRefPubMed
16.
go back to reference Carreira, V. S., Fan, Y., Wang, Q., Zhang, X., Kurita, H., Ko, C. I., et al. (2015). Ah receptor signaling controls the expression of cardiac development and homeostasis genes. Toxicological Sciences, 147(2), 425–435.CrossRefPubMedPubMedCentral Carreira, V. S., Fan, Y., Wang, Q., Zhang, X., Kurita, H., Ko, C. I., et al. (2015). Ah receptor signaling controls the expression of cardiac development and homeostasis genes. Toxicological Sciences, 147(2), 425–435.CrossRefPubMedPubMedCentral
17.
go back to reference Carreira, V. S., Fan, Y., Kurita, H., Wang, Q., Ko, C. I., Naticchioni, M., et al. (2015). Disruption of Ah receptor signaling during mouse development leads to abnormal cardiac structure and function in the adult. PLoS One, 10(11), e0142440.CrossRefPubMedPubMedCentral Carreira, V. S., Fan, Y., Kurita, H., Wang, Q., Ko, C. I., Naticchioni, M., et al. (2015). Disruption of Ah receptor signaling during mouse development leads to abnormal cardiac structure and function in the adult. PLoS One, 10(11), e0142440.CrossRefPubMedPubMedCentral
18.
go back to reference Dietrich, C. (2016). Antioxidant functions of the aryl hydrocarbon receptor. (2016). Stem Cells International, 7943495. Dietrich, C. (2016). Antioxidant functions of the aryl hydrocarbon receptor. (2016). Stem Cells International, 7943495.
19.
go back to reference Harper, P. A., Wong, J. M., Lam, M. S., & Okey, A. B. (2002). Polymorphisms in the human AH receptor. Chemico-Biological Interactions, 141(1–2), 161–187.CrossRefPubMed Harper, P. A., Wong, J. M., Lam, M. S., & Okey, A. B. (2002). Polymorphisms in the human AH receptor. Chemico-Biological Interactions, 141(1–2), 161–187.CrossRefPubMed
20.
go back to reference Puga, A. (2011). Perspectives on the potential involvement of the Ah receptor-dioxin axis in cardiovascular disease. Toxicological Sciences, 120(2), 256–261.CrossRefPubMed Puga, A. (2011). Perspectives on the potential involvement of the Ah receptor-dioxin axis in cardiovascular disease. Toxicological Sciences, 120(2), 256–261.CrossRefPubMed
21.
go back to reference Caccamo, D., Cesareo, E., Mariani, S., Raskovic, D., Ientile, R., Currò, M., et al. (2013). Xenobiotic sensor- and metabolism-related gene variants in environmental sensitivity-related illnesses: A survey on the Italian population. Oxidative Medicine and Cellular Longevity, 2013, 831969.CrossRefPubMedPubMedCentral Caccamo, D., Cesareo, E., Mariani, S., Raskovic, D., Ientile, R., Currò, M., et al. (2013). Xenobiotic sensor- and metabolism-related gene variants in environmental sensitivity-related illnesses: A survey on the Italian population. Oxidative Medicine and Cellular Longevity, 2013, 831969.CrossRefPubMedPubMedCentral
22.
go back to reference Rowlands, J. C., Staskal, D. F., Gollapudi, B., & Budinsky, R. (2010). The human AHR: Identification of single nucleotide polymorphisms from six ethnic populations. Pharmacogenetics and Genomics, 20(5), 283–290.CrossRefPubMed Rowlands, J. C., Staskal, D. F., Gollapudi, B., & Budinsky, R. (2010). The human AHR: Identification of single nucleotide polymorphisms from six ethnic populations. Pharmacogenetics and Genomics, 20(5), 283–290.CrossRefPubMed
23.
go back to reference Smart, J., & Daly, A. K. (2000). Variation in induced CYP1A1 levels: Relationship to CYP1A1, Ahr receptor and GSTM1 polymorphisms. Pharmacogenetics, 10, 11–24.CrossRefPubMed Smart, J., & Daly, A. K. (2000). Variation in induced CYP1A1 levels: Relationship to CYP1A1, Ahr receptor and GSTM1 polymorphisms. Pharmacogenetics, 10, 11–24.CrossRefPubMed
24.
go back to reference Wong, J. M., Okey, A. B., & Harper, P. A. (2001). Human aryl hydrocarbon receptor polymorphisms that result in loss of CYP1A1 induction. Biochemical and Biophysical Research Communications, 288, 990–996.CrossRefPubMed Wong, J. M., Okey, A. B., & Harper, P. A. (2001). Human aryl hydrocarbon receptor polymorphisms that result in loss of CYP1A1 induction. Biochemical and Biophysical Research Communications, 288, 990–996.CrossRefPubMed
25.
go back to reference Helmig, S., Seelinger, J. U., Döhrel, J., & Schneider, J. (2011). RNA expressions of AHR, ARNT and CYP1B1 are influenced by AHR Arg554Lys polymorphism. Molecular Genetics and Metabolism, 104, 180–184.CrossRefPubMed Helmig, S., Seelinger, J. U., Döhrel, J., & Schneider, J. (2011). RNA expressions of AHR, ARNT and CYP1B1 are influenced by AHR Arg554Lys polymorphism. Molecular Genetics and Metabolism, 104, 180–184.CrossRefPubMed
26.
go back to reference Aftabi, Y., Colagar, A. H., & Mehrnejad, F. (2016). An in silico approach to investigate the source of the controversial interpretations about the phenotypic results of the human AhR-gene G1661A polymorphism. Journal of Theoretical Biology, 393, 1–15.CrossRefPubMed Aftabi, Y., Colagar, A. H., & Mehrnejad, F. (2016). An in silico approach to investigate the source of the controversial interpretations about the phenotypic results of the human AhR-gene G1661A polymorphism. Journal of Theoretical Biology, 393, 1–15.CrossRefPubMed
27.
go back to reference Kobayashi, S., Sata, F., Sasaki, S., Ban, S., Miyashita, C., Okada, E., et al. (2013). Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicology Letters, 219(3), 269–278.CrossRefPubMed Kobayashi, S., Sata, F., Sasaki, S., Ban, S., Miyashita, C., Okada, E., et al. (2013). Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicology Letters, 219(3), 269–278.CrossRefPubMed
28.
go back to reference Kayano, S., Suzuki, Y., Kanno, K., Aoki, Y., Kure, S., Yamada, A., et al. (2004). Significant association between nonsyndromic oral clefts and arylhydrocarbon receptor nuclear translocator (ARNT). American Journal of Medical Genetics Part A, 130A(1), 40–44.CrossRefPubMed Kayano, S., Suzuki, Y., Kanno, K., Aoki, Y., Kure, S., Yamada, A., et al. (2004). Significant association between nonsyndromic oral clefts and arylhydrocarbon receptor nuclear translocator (ARNT). American Journal of Medical Genetics Part A, 130A(1), 40–44.CrossRefPubMed
29.
go back to reference Bock, K. W., & Köhle, C. (2006). Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochemical Pharmacology, 72(4), 393–404.CrossRefPubMed Bock, K. W., & Köhle, C. (2006). Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochemical Pharmacology, 72(4), 393–404.CrossRefPubMed
30.
go back to reference Gonzalez, F. J., & Fernandez-Salguero, P. (1998). The aryl hydrocarbon receptor: Studies using the AHR-null mice. Drug Metabolism and Disposition, 26(12), 1194–1198.PubMed Gonzalez, F. J., & Fernandez-Salguero, P. (1998). The aryl hydrocarbon receptor: Studies using the AHR-null mice. Drug Metabolism and Disposition, 26(12), 1194–1198.PubMed
31.
go back to reference Mackenzie, S. G., & Lippman, A. (1989). An investigation of report bias in a case-control study of pregnancy outcome. American Journal of Epidemiology, 129(1), 65–75.CrossRefPubMed Mackenzie, S. G., & Lippman, A. (1989). An investigation of report bias in a case-control study of pregnancy outcome. American Journal of Epidemiology, 129(1), 65–75.CrossRefPubMed
32.
go back to reference Van Driel, L. M., Smedts, H. P., Helbing, W. A., Isaacs, A., Lindemans, J., Uitterlinden, A. G., et al. (2008). Eight-fold increased risk for congenital heart defects in children carrying the nicotinamide N-methyltransferase polymorphism and exposed to medicines and low nicotinamide. European Heart Journal, 29(11), 1424–1431.CrossRefPubMed Van Driel, L. M., Smedts, H. P., Helbing, W. A., Isaacs, A., Lindemans, J., Uitterlinden, A. G., et al. (2008). Eight-fold increased risk for congenital heart defects in children carrying the nicotinamide N-methyltransferase polymorphism and exposed to medicines and low nicotinamide. European Heart Journal, 29(11), 1424–1431.CrossRefPubMed
Metadata
Title
A Functional Aryl Hydrocarbon Receptor Genetic Variant, Alone and in Combination with Parental Exposure, is a Risk Factor for Congenital Heart Disease
Authors
Silvia Pulignani
Andrea Borghini
Cecilia Vecoli
Ilenia Foffa
Lamia Ait-Ali
Maria Grazia Andreassi
Publication date
01-06-2018
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2018
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9436-9

Other articles of this Issue 3/2018

Cardiovascular Toxicology 3/2018 Go to the issue