Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary research

A drug screening assay on cancer cells chronically adapted to acidosis

Authors: Paola Pellegrini, Jason T. Serviss, Thomas Lundbäck, Nicolo Bancaro, Magdalena Mazurkiewicz, Iryna Kolosenko, Di Yu, Martin Haraldsson, Padraig D’Arcy, Stig Linder, Angelo De Milito

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

Drug screening for the identification of compounds with anticancer activity is commonly performed using cell lines cultured under normal oxygen pressure and physiological pH. However, solid tumors are characterized by a microenvironment with limited access to nutrients, reduced oxygen supply and acidosis. Tumor hypoxia and acidosis have been identified as important drivers of malignant progression and contribute to multicellular resistance to different forms of therapy. Tumor acidosis represents an important mechanism mediating drug resistance thus the identification of drugs active on acid-adapted cells may improve the efficacy of cancer therapy.

Methods

Here, we characterized human colon carcinoma cells (HCT116) chronically adapted to grow at pH 6.8 and used them to screen the Prestwick drug library for cytotoxic compounds. Analysis of gene expression profiles in parental and low pH-adapted cells showed several differences relating to cell cycle, metabolism and autophagy.

Results

The screen led to the identification of several compounds which were further selected for their preferential cytotoxicity towards acid-adapted cells. Amongst 11 confirmed hits, we primarily focused our investigation on the benzoporphyrin derivative Verteporfin (VP). VP significantly reduced viability in low pH-adapted HCT116 cells as compared to parental HCT116 cells and normal immortalized epithelial cells. The cytotoxic activity of VP was enhanced by light activation and acidic pH culture conditions, likely via increased acid-dependent drug uptake. VP displayed the unique property to cause light-dependent cross-linking of proteins and resulted in accumulation of polyubiquitinated proteins without inducing inhibition of the proteasome.

Conclusions

Our study provides an example and a tool to identify anticancer drugs targeting acid-adapted cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49(Suppl 2):24S–42S.CrossRef Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49(Suppl 2):24S–42S.CrossRef
2.
go back to reference Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.CrossRef Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.CrossRef
3.
go back to reference Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.CrossRef Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.CrossRef
4.
go back to reference Shoemaker RH, Scudiero DA, Melillo G, Currens MJ, Monks AP, Rabow AA, et al. Application of high-throughput, molecular-targeted screening to anticancer drug discovery. Curr Top Med Chem. 2002;2:229–46.CrossRef Shoemaker RH, Scudiero DA, Melillo G, Currens MJ, Monks AP, Rabow AA, et al. Application of high-throughput, molecular-targeted screening to anticancer drug discovery. Curr Top Med Chem. 2002;2:229–46.CrossRef
5.
go back to reference Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148:3–15.CrossRef Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148:3–15.CrossRef
6.
go back to reference Zhang X, de Milito A, Olofsson MH, Gullbo J, D’Arcy P, Linder S. Targeting mitochondrial function to treat quiescent tumor cells in solid tumors. Int J Mol Sci. 2015;16:27313–26.CrossRef Zhang X, de Milito A, Olofsson MH, Gullbo J, D’Arcy P, Linder S. Targeting mitochondrial function to treat quiescent tumor cells in solid tumors. Int J Mol Sci. 2015;16:27313–26.CrossRef
7.
go back to reference Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. The significance of acid/base properties in drug discovery. Chem Soc Rev Chem Soc Rev. 2013;42:485–96.CrossRef Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. The significance of acid/base properties in drug discovery. Chem Soc Rev Chem Soc Rev. 2013;42:485–96.CrossRef
8.
go back to reference Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol. 2017;43:119–33.CrossRef Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol. 2017;43:119–33.CrossRef
9.
go back to reference Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol. 2011;226:299–308.CrossRef Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol. 2011;226:299–308.CrossRef
10.
go back to reference Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017;17:577–93.CrossRef Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017;17:577–93.CrossRef
11.
go back to reference Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.CrossRef Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.CrossRef
12.
go back to reference Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49:4373–84.PubMed Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49:4373–84.PubMed
13.
go back to reference Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello M, Linder S, et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy. 2014;10:562–71.CrossRef Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello M, Linder S, et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy. 2014;10:562–71.CrossRef
14.
go back to reference Pellegrini P, Dyczynski M, Sbrana FV, Karlgren M, Buoncervello M, Häggolofsson M, et al. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget. 2016;7:35703–23.CrossRef Pellegrini P, Dyczynski M, Sbrana FV, Karlgren M, Buoncervello M, Häggolofsson M, et al. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget. 2016;7:35703–23.CrossRef
15.
go back to reference Zhang X, Fryknäs M, Hernlund E, Fayad W, De Milito A, Olofsson MH, et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun. 2014;5:3295.CrossRef Zhang X, Fryknäs M, Hernlund E, Fayad W, De Milito A, Olofsson MH, et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun. 2014;5:3295.CrossRef
16.
go back to reference Yang T-T, Sinai P, Kain SR. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Anal Biochem. 1996;241:103–8.CrossRef Yang T-T, Sinai P, Kain SR. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Anal Biochem. 1996;241:103–8.CrossRef
17.
go back to reference Kolosenko I, Fryknäs M, Forsberg S, Johnsson P, Cheon H, Holvey-Bates EG, et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer. 2015;136:E51–61.CrossRef Kolosenko I, Fryknäs M, Forsberg S, Johnsson P, Cheon H, Holvey-Bates EG, et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer. 2015;136:E51–61.CrossRef
18.
go back to reference Fateye B, Wan A, Yang X, Myers K, Chen B. Comparison between endothelial and tumor cells in the response to verteporfin-photodynamic therapy and a PI3 K pathway inhibitor. Photodiagnosis Photodyn Ther. 2015;12:19–26.CrossRef Fateye B, Wan A, Yang X, Myers K, Chen B. Comparison between endothelial and tumor cells in the response to verteporfin-photodynamic therapy and a PI3 K pathway inhibitor. Photodiagnosis Photodyn Ther. 2015;12:19–26.CrossRef
19.
go back to reference Menéndez-Benito V, Heessen S, Dantuma NP. Monitoring of ubiquitin-dependent proteolysis with green fluorescent protein substrates. Methods Enzymol. 2005;399:490–511.CrossRef Menéndez-Benito V, Heessen S, Dantuma NP. Monitoring of ubiquitin-dependent proteolysis with green fluorescent protein substrates. Methods Enzymol. 2005;399:490–511.CrossRef
20.
go back to reference Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.CrossRef Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.CrossRef
21.
go back to reference Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with highthroughput sequencing data. Bioinformatics. 2015;31:166–9.CrossRef Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with highthroughput sequencing data. Bioinformatics. 2015;31:166–9.CrossRef
22.
go back to reference Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.CrossRef Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.CrossRef
25.
go back to reference Fröhlich H, Speer N, Poustka A, Beissbarth T. GOSim—an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinform. 2007;8:166.CrossRef Fröhlich H, Speer N, Poustka A, Beissbarth T. GOSim—an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinform. 2007;8:166.CrossRef
26.
go back to reference Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.CrossRef Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.CrossRef
27.
go back to reference Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E. 2006;74:16110.CrossRef Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E. 2006;74:16110.CrossRef
29.
go back to reference Kleinberg JM. Authoritative sources in a hyperlinked environment. In: Proceedings of the ACM-SIAM symposium on discrete algorithms.1998. Kleinberg JM. Authoritative sources in a hyperlinked environment. In: Proceedings of the ACM-SIAM symposium on discrete algorithms.1998.
31.
go back to reference Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics: i. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66:1207–18.CrossRef Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics: i. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66:1207–18.CrossRef
32.
go back to reference Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032–8.CrossRef Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032–8.CrossRef
33.
go back to reference Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res. 2005;11:8782–8.CrossRef Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res. 2005;11:8782–8.CrossRef
34.
go back to reference Damaghi M, Tafreshi NK, Lloyd MC, Sprung R, Estrella V, Wojtkowiak JW, et al. Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nat Commun. 2015;6:8752.CrossRef Damaghi M, Tafreshi NK, Lloyd MC, Sprung R, Estrella V, Wojtkowiak JW, et al. Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nat Commun. 2015;6:8752.CrossRef
35.
go back to reference Gibault F, Corvaisier M, Bailly F, Huet G, Melnyk P, Cotelle P. Non-photoinduced biological properties of verteporfin. Curr Med Chem. 2016;23:1171–84.CrossRef Gibault F, Corvaisier M, Bailly F, Huet G, Melnyk P, Cotelle P. Non-photoinduced biological properties of verteporfin. Curr Med Chem. 2016;23:1171–84.CrossRef
36.
go back to reference Zhang H, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Győrffy B, et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal. 2015;8:ra98.CrossRef Zhang H, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Győrffy B, et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal. 2015;8:ra98.CrossRef
37.
go back to reference Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;1300:5. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;1300:5.
38.
go back to reference Senkowski W, Zhang X, Olofsson MH, Isacson R, Hoglund U, Gustafsson M, et al. Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer. Mol Cancer Ther. 2015;14:1504–16.CrossRef Senkowski W, Zhang X, Olofsson MH, Isacson R, Hoglund U, Gustafsson M, et al. Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer. Mol Cancer Ther. 2015;14:1504–16.CrossRef
39.
go back to reference Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, et al. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep. 2017;7:7602.CrossRef Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, et al. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep. 2017;7:7602.CrossRef
40.
go back to reference Chen WS, Cao Z, Krishnan C, Panjwani N. Verteporfin without light stimulation inhibits YAP activation in trabecular meshwork cells: implications for glaucoma treatment. Biochem Biophys Res Commun. 2015;466:221–5.CrossRef Chen WS, Cao Z, Krishnan C, Panjwani N. Verteporfin without light stimulation inhibits YAP activation in trabecular meshwork cells: implications for glaucoma treatment. Biochem Biophys Res Commun. 2015;466:221–5.CrossRef
41.
go back to reference Donohue E, Balgi AD, Komatsu M, Roberge M. Induction of covalently crosslinked p62 oligomers with reduced binding to polyubiquitinated proteins by the autophagy inhibitor verteporfin. PLoS ONE. 2014;114:964. Donohue E, Balgi AD, Komatsu M, Roberge M. Induction of covalently crosslinked p62 oligomers with reduced binding to polyubiquitinated proteins by the autophagy inhibitor verteporfin. PLoS ONE. 2014;114:964.
42.
go back to reference Pinto A, Mace Y, Drouet F, Bony E, Boidot R, Draoui N, et al. A new ER-specific photosensitizer unravels O2-driven protein oxidation and inhibition of deubiquitinases as a generic mechanism for cancer PDT. Oncogene. 2015;35:3976–85.CrossRef Pinto A, Mace Y, Drouet F, Bony E, Boidot R, Draoui N, et al. A new ER-specific photosensitizer unravels O2-driven protein oxidation and inhibition of deubiquitinases as a generic mechanism for cancer PDT. Oncogene. 2015;35:3976–85.CrossRef
43.
go back to reference Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, et al. Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem. 2012;287:30664–76.CrossRef Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, et al. Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem. 2012;287:30664–76.CrossRef
44.
go back to reference Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating t lymphocytes. Cancer Res. 2012;72:2746–56.CrossRef Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating t lymphocytes. Cancer Res. 2012;72:2746–56.CrossRef
45.
go back to reference Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol. 2001;69:522–30.PubMed Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol. 2001;69:522–30.PubMed
46.
go back to reference Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76:1381–90.CrossRef Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76:1381–90.CrossRef
47.
go back to reference Ruzzolini J, Peppicelli S, Andreucci E, Bianchini F, Margheri F, Laurenzana A, et al. Everolimus selectively targets vemurafenib resistant BRAF V600E melanoma cells adapted to low pH. Cancer Lett. 2017;408:43–54.CrossRef Ruzzolini J, Peppicelli S, Andreucci E, Bianchini F, Margheri F, Laurenzana A, et al. Everolimus selectively targets vemurafenib resistant BRAF V600E melanoma cells adapted to low pH. Cancer Lett. 2017;408:43–54.CrossRef
48.
go back to reference Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, et al. Phase I & II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 2014;110:1698–704.CrossRef Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, et al. Phase I & II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 2014;110:1698–704.CrossRef
49.
go back to reference Ciamporcero E, Shen H, Ramakrishnan S, Yu KuS, Chintala S, Shen L, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35:1541–53.CrossRef Ciamporcero E, Shen H, Ramakrishnan S, Yu KuS, Chintala S, Shen L, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35:1541–53.CrossRef
50.
go back to reference Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249–63.CrossRef Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249–63.CrossRef
51.
go back to reference Yu F-X, Luo J, Mo J-S, Liu G, Kim YC, Meng Z, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25:822–30.CrossRef Yu F-X, Luo J, Mo J-S, Liu G, Kim YC, Meng Z, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25:822–30.CrossRef
52.
go back to reference Chen M, Zhong L, Yao S-F, Zhao Y, Liu L, Li L-W, et al. Verteporfin inhibits cell proliferation and induces apoptosis in human leukemia NB4 cells without light activation. Int J Med Sci. 2017;14:1031–9.CrossRef Chen M, Zhong L, Yao S-F, Zhao Y, Liu L, Li L-W, et al. Verteporfin inhibits cell proliferation and induces apoptosis in human leukemia NB4 cells without light activation. Int J Med Sci. 2017;14:1031–9.CrossRef
53.
go back to reference Konstantinou EK, Notomi S, Kosmidou C, Brodowska K, Al-Moujahed A, Nicolaou F, et al. Verteporfin-induced formation of protein cross-linked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity. Sci Rep. 2017;7:46581.CrossRef Konstantinou EK, Notomi S, Kosmidou C, Brodowska K, Al-Moujahed A, Nicolaou F, et al. Verteporfin-induced formation of protein cross-linked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity. Sci Rep. 2017;7:46581.CrossRef
Metadata
Title
A drug screening assay on cancer cells chronically adapted to acidosis
Authors
Paola Pellegrini
Jason T. Serviss
Thomas Lundbäck
Nicolo Bancaro
Magdalena Mazurkiewicz
Iryna Kolosenko
Di Yu
Martin Haraldsson
Padraig D’Arcy
Stig Linder
Angelo De Milito
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0645-5

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine