Skip to main content
Top
Published in: Journal of Neurology 7/2016

01-07-2016 | Original Communication

A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease

Authors: Jose Luis López-Sendón Moreno, Juan García Caldentey, Patricia Trigo Cubillo, Carolina Ruiz Romero, Guillermo García Ribas, M. A. Alonso Alonso Arias, María Jesús García de Yébenes, Rosa María Tolón, Ismael Galve-Roperh, Onintza Sagredo, Sara Valdeolivas, Eva Resel, Silvia Ortega-Gutierrez, María Laura García-Bermejo, Javier Fernández Ruiz, Manuel Guzmán, Justo García de Yébenes Prous

Published in: Journal of Neurology | Issue 7/2016

Login to get access

Abstract

Huntington’s disease (HD) is a neurodegenerative disease for which there is no curative treatment available. Given that the endocannabinoid system is involved in the pathogenesis of HD mouse models, stimulation of specific targets within this signaling system has been investigated as a promising therapeutic agent in HD. We conducted a double-blind, randomized, placebo-controlled, cross-over pilot clinical trial with Sativex®, a botanical extract with an equimolecular combination of delta-9-tetrahydrocannabinol and cannabidiol. Both Sativex® and placebo were dispensed as an oral spray, to be administered up to 12 sprays/day for 12 weeks. The primary objective was safety, assessed by the absence of more severe adverse events (SAE) and no greater deterioration of motor, cognitive, behavioral and functional scales during the phase of active treatment. Secondary objectives were clinical improvement of Unified Huntington Disease Rating Scale scores. Twenty-six patients were randomized and 24 completed the trial. After ruling-out period and sequence effects, safety and tolerability were confirmed. No differences on motor (p = 0.286), cognitive (p = 0.824), behavioral (p = 1.0) and functional (p = 0.581) scores were detected during treatment with Sativex® as compared to placebo. No significant molecular effects were detected on the biomarker analysis. Sativex® is safe and well tolerated in patients with HD, with no SAE or clinical worsening. No significant symptomatic effects were detected at the prescribed dosage and for a 12-week period. Also, no significant molecular changes were observed on the biomarkers. Future study designs should consider higher doses, longer treatment periods and/or alternative cannabinoid combinations.
Clincaltrals.gov identifier: NCT01502046
Appendix
Available only for authorised users
Literature
2.
go back to reference The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983CrossRef The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983CrossRef
3.
go back to reference Rosas HD, Salat DH, Lee SY et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131(Pt 4):1057–1068CrossRefPubMedPubMedCentral Rosas HD, Salat DH, Lee SY et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131(Pt 4):1057–1068CrossRefPubMedPubMedCentral
4.
go back to reference Marsicano G, Goodenough S, Monory K et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88CrossRefPubMed Marsicano G, Goodenough S, Monory K et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88CrossRefPubMed
5.
go back to reference Cota D (2007) CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab Res Rev 23(7):507–517CrossRefPubMed Cota D (2007) CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab Res Rev 23(7):507–517CrossRefPubMed
6.
go back to reference Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380CrossRefPubMed Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380CrossRefPubMed
7.
go back to reference Wright S (2007) Cannabinoid-based medicines for neurological disorders–clinical evidence. Mol Neurobiol 36(1):129–136CrossRefPubMed Wright S (2007) Cannabinoid-based medicines for neurological disorders–clinical evidence. Mol Neurobiol 36(1):129–136CrossRefPubMed
9.
go back to reference Pazos MR, Sagredo O, Fernandez-Ruiz J (2008) The endocannabinoid system in Huntington’s disease. Curr Pharm Des 14(23):2317–2325CrossRefPubMed Pazos MR, Sagredo O, Fernandez-Ruiz J (2008) The endocannabinoid system in Huntington’s disease. Curr Pharm Des 14(23):2317–2325CrossRefPubMed
10.
go back to reference Fernandez-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28(1):39–45CrossRefPubMed Fernandez-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28(1):39–45CrossRefPubMed
11.
go back to reference Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E (2010) The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets 14(4):387–404CrossRefPubMed Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E (2010) The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets 14(4):387–404CrossRefPubMed
13.
go back to reference Gowran A, Noonan J, Campbell VA (2011) The multiplicity of action of cannabinoids: implications for treating neurodegeneration. CNS Neurosci Ther 17(6):637–644CrossRefPubMed Gowran A, Noonan J, Campbell VA (2011) The multiplicity of action of cannabinoids: implications for treating neurodegeneration. CNS Neurosci Ther 17(6):637–644CrossRefPubMed
14.
15.
go back to reference Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583PubMed Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583PubMed
16.
go back to reference Nunez E, Benito C, Tolon RM, Hillard CJ, Griffin WS, Romero J (2008) Glial expression of cannabinoid CB(2) receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down’s syndrome. Neuroscience 151(1):104–110CrossRefPubMed Nunez E, Benito C, Tolon RM, Hillard CJ, Griffin WS, Romero J (2008) Glial expression of cannabinoid CB(2) receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down’s syndrome. Neuroscience 151(1):104–110CrossRefPubMed
17.
go back to reference Toth A, Blumberg PM, Boczan J (2009) Anandamide and the vanilloid receptor (TRPV1). Vitam Horm 81:389–419CrossRefPubMed Toth A, Blumberg PM, Boczan J (2009) Anandamide and the vanilloid receptor (TRPV1). Vitam Horm 81:389–419CrossRefPubMed
18.
go back to reference van der Stelt M, Veldhuis WB, Maccarrone M et al (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26(2–3):317–346CrossRefPubMed van der Stelt M, Veldhuis WB, Maccarrone M et al (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26(2–3):317–346CrossRefPubMed
19.
go back to reference Chiarlone A, Bellocchio L, Blazquez C et al (2014) A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci USA 111(22):8257–8262CrossRefPubMedPubMedCentral Chiarlone A, Bellocchio L, Blazquez C et al (2014) A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci USA 111(22):8257–8262CrossRefPubMedPubMedCentral
20.
go back to reference Palazuelos J, Aguado T, Pazos MR et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164CrossRefPubMed Palazuelos J, Aguado T, Pazos MR et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164CrossRefPubMed
21.
go back to reference Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95(14):8268–8273CrossRefPubMedPubMedCentral Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95(14):8268–8273CrossRefPubMedPubMedCentral
22.
go back to reference Muller-Vahl KR, Schneider U, Emrich HM (1999) Nabilone increases choreatic movements in Huntington’s disease. Mov Disord 14(6):1038–1040CrossRefPubMed Muller-Vahl KR, Schneider U, Emrich HM (1999) Nabilone increases choreatic movements in Huntington’s disease. Mov Disord 14(6):1038–1040CrossRefPubMed
23.
go back to reference Curtis A, Rickards H (2006) Nabilone could treat chorea and irritability in Huntington’s disease. J Neuropsychiatry Clin Neurosci 18(4):553–554CrossRefPubMed Curtis A, Rickards H (2006) Nabilone could treat chorea and irritability in Huntington’s disease. J Neuropsychiatry Clin Neurosci 18(4):553–554CrossRefPubMed
24.
go back to reference Curtis A, Mitchell I, Patel S, Ives N, Rickards H (2009) A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord 24(15):2254–2259CrossRefPubMed Curtis A, Mitchell I, Patel S, Ives N, Rickards H (2009) A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord 24(15):2254–2259CrossRefPubMed
25.
go back to reference Consroe P, Laguna J, Allender J et al (1991) Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 40(3):701–708CrossRefPubMed Consroe P, Laguna J, Allender J et al (1991) Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 40(3):701–708CrossRefPubMed
26.
go back to reference Russo E, Guy GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66(2):234–246CrossRefPubMed Russo E, Guy GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66(2):234–246CrossRefPubMed
27.
go back to reference Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernandez-Ruiz J, Brouillet E (2004) Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo. NeuroReport 15(15):2375–2379CrossRefPubMed Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernandez-Ruiz J, Brouillet E (2004) Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo. NeuroReport 15(15):2375–2379CrossRefPubMed
28.
go back to reference Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernandez-Ruiz J (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci 26(4):843–851CrossRefPubMed Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernandez-Ruiz J (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci 26(4):843–851CrossRefPubMed
29.
go back to reference Valdeolivas S, Satta V, Pertwee RG, Fernandez-Ruiz J, Sagredo O (2011) Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB1 and CB2 receptors. ACS Chem Neurosci 3(5):400–406CrossRef Valdeolivas S, Satta V, Pertwee RG, Fernandez-Ruiz J, Sagredo O (2011) Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB1 and CB2 receptors. ACS Chem Neurosci 3(5):400–406CrossRef
30.
go back to reference Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11(2):136–142CrossRef Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11(2):136–142CrossRef
31.
go back to reference Gomez-Tortosa E, Gonzalo I, Fanjul S et al (2003) Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease. Arch Neurol 60(9):1218–1222CrossRefPubMed Gomez-Tortosa E, Gonzalo I, Fanjul S et al (2003) Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease. Arch Neurol 60(9):1218–1222CrossRefPubMed
32.
go back to reference Reiriz J, Mena MA, Bazan E et al (1989) Temporal profile of levels of monoamines and their metabolites in striata of rats implanted with dialysis tubes. J Neurochem 53(3):789–792CrossRefPubMed Reiriz J, Mena MA, Bazan E et al (1989) Temporal profile of levels of monoamines and their metabolites in striata of rats implanted with dialysis tubes. J Neurochem 53(3):789–792CrossRefPubMed
33.
go back to reference Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Bjorkqvist M (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20(11):2225–2237CrossRefPubMed Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Bjorkqvist M (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20(11):2225–2237CrossRefPubMed
34.
go back to reference Hernandez-Torres G, Cipriano M, Heden E et al (2014) A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew Chem Int Ed Engl 53(50):13765–13770CrossRefPubMed Hernandez-Torres G, Cipriano M, Heden E et al (2014) A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew Chem Int Ed Engl 53(50):13765–13770CrossRefPubMed
35.
go back to reference Bisogno T, Martire A, Petrosino S, Popoli P, Di Marzo V (2008) Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem Int 52(1–2):307–313CrossRefPubMed Bisogno T, Martire A, Petrosino S, Popoli P, Di Marzo V (2008) Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem Int 52(1–2):307–313CrossRefPubMed
36.
go back to reference Fernandez-Estevez MA, Casarejos MJ, Lopez Sendon J et al (2014) Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One 9(2):e90202CrossRefPubMedPubMedCentral Fernandez-Estevez MA, Casarejos MJ, Lopez Sendon J et al (2014) Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One 9(2):e90202CrossRefPubMedPubMedCentral
37.
go back to reference Battista N, Bari M, Tarditi A et al (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington’s disease mutation in peripheral lymphocytes. Neurobiol Dis 27(1):108–116CrossRefPubMed Battista N, Bari M, Tarditi A et al (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington’s disease mutation in peripheral lymphocytes. Neurobiol Dis 27(1):108–116CrossRefPubMed
38.
go back to reference Casarejos MJ, Perucho J, Gomez A et al (2013) Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. J Alzheimers Dis 35(3):525–539PubMed Casarejos MJ, Perucho J, Gomez A et al (2013) Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. J Alzheimers Dis 35(3):525–539PubMed
39.
go back to reference Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3):382–389CrossRefPubMed Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3):382–389CrossRefPubMed
40.
go back to reference Giampa C, Montagna E, Dato C, Melone MA, Bernardi G, Fusco FR (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8(5):e64037CrossRefPubMedPubMedCentral Giampa C, Montagna E, Dato C, Melone MA, Bernardi G, Fusco FR (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8(5):e64037CrossRefPubMedPubMedCentral
41.
go back to reference Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498CrossRefPubMed Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498CrossRefPubMed
42.
go back to reference Chang KH, Chen YC, Wu YR, Lee WF, Chen CM (2012) Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington’s disease patients. PLoS One 7(9):e46492CrossRefPubMedPubMedCentral Chang KH, Chen YC, Wu YR, Lee WF, Chen CM (2012) Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington’s disease patients. PLoS One 7(9):e46492CrossRefPubMedPubMedCentral
43.
go back to reference Sagredo O, Gonzalez S, Aroyo I et al (2009) Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease. Glia 57(11):1154–1167CrossRefPubMedPubMedCentral Sagredo O, Gonzalez S, Aroyo I et al (2009) Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease. Glia 57(11):1154–1167CrossRefPubMedPubMedCentral
44.
go back to reference Butovsky E, Juknat A, Goncharov I et al (2005) In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Delta-tetrahydrocannabinol. J Neurochem 93(4):802–811CrossRefPubMed Butovsky E, Juknat A, Goncharov I et al (2005) In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Delta-tetrahydrocannabinol. J Neurochem 93(4):802–811CrossRefPubMed
45.
go back to reference D’Souza DC, Pittman B, Perry E, Simen A (2009) Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology 202(4):569–578CrossRefPubMed D’Souza DC, Pittman B, Perry E, Simen A (2009) Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology 202(4):569–578CrossRefPubMed
46.
go back to reference De Petrocellis L, Ligresti A, Moriello AS et al (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163(7):1479–1494CrossRefPubMedPubMedCentral De Petrocellis L, Ligresti A, Moriello AS et al (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163(7):1479–1494CrossRefPubMedPubMedCentral
47.
go back to reference Thieme D, Sachs H, Uhl M (2014) Proof of cannabis administration by sensitive detection of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid in hair using selective methylation and application of liquid chromatography- tandem and multistage mass spectrometry. Drug Test Anal 6(1–2):112–118CrossRefPubMed Thieme D, Sachs H, Uhl M (2014) Proof of cannabis administration by sensitive detection of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid in hair using selective methylation and application of liquid chromatography- tandem and multistage mass spectrometry. Drug Test Anal 6(1–2):112–118CrossRefPubMed
48.
go back to reference Blazquez C, Chiarlone A, Sagredo O et al (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 134(Pt 1):119–136CrossRefPubMed Blazquez C, Chiarlone A, Sagredo O et al (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 134(Pt 1):119–136CrossRefPubMed
49.
go back to reference Van Laere K, Casteels C, Dhollander I et al (2010) Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 51(9):1413–1417CrossRefPubMed Van Laere K, Casteels C, Dhollander I et al (2010) Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 51(9):1413–1417CrossRefPubMed
Metadata
Title
A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease
Authors
Jose Luis López-Sendón Moreno
Juan García Caldentey
Patricia Trigo Cubillo
Carolina Ruiz Romero
Guillermo García Ribas
M. A. Alonso Alonso Arias
María Jesús García de Yébenes
Rosa María Tolón
Ismael Galve-Roperh
Onintza Sagredo
Sara Valdeolivas
Eva Resel
Silvia Ortega-Gutierrez
María Laura García-Bermejo
Javier Fernández Ruiz
Manuel Guzmán
Justo García de Yébenes Prous
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 7/2016
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-016-8145-9

Other articles of this Issue 7/2016

Journal of Neurology 7/2016 Go to the issue

Pioneers in Neurology

Jules Tinel (1879–1952)