Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2017

Open Access 01-12-2017 | Research

A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis

Authors: Johnathan Cooper-Knock, Claire Green, Gabriel Altschuler, Wenbin Wei, Joanna J. Bury, Paul R. Heath, Matthew Wyles, Catherine Gelsthorpe, J. Robin Highley, Alejandro Lorente-Pons, Tim Beck, Kathryn Doyle, Karel Otero, Bryan Traynor, Janine Kirby, Pamela J. Shaw, Winston Hide

Published in: Acta Neuropathologica Communications | Issue 1/2017

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that lacks a predictive and broadly applicable biomarker. Continued focus on mutation-specific upstream mechanisms has yet to predict disease progression in the clinic. Utilising cellular pathology common to the majority of ALS patients, we implemented an objective transcriptome-driven approach to develop noninvasive prognostic biomarkers for disease progression. Genes expressed in laser captured motor neurons in direct correlation (Spearman rank correlation, p < 0.01) with counts of neuropathology were developed into co-expression network modules. Screening modules using three gene sets representing rate of disease progression and upstream genetic association with ALS led to the prioritisation of a single module enriched for immune response to motor neuron degeneration. Genes in the network module are important for microglial activation and predict disease progression in genetically heterogeneous ALS cohorts: Expression of three genes in peripheral lymphocytes - LILRA2, ITGB2 and CEBPD – differentiate patients with rapid and slowly progressive disease, suggesting promise as a blood-derived biomarker. TREM2 is a member of the network module and the level of soluble TREM2 protein in cerebrospinal fluid is shown to predict survival when measured in late stage disease (Spearman rank correlation, p = 0.01). Our data-driven systems approach has, for the first time, directly linked microglia to the development of motor neuron pathology. LILRA2, ITGB2 and CEBPD represent peripherally accessible candidate biomarkers and TREM2 provides a broadly applicable therapeutic target for ALS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S et al (2011) Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134:1293–314CrossRefPubMedPubMedCentral Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S et al (2011) Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134:1293–314CrossRefPubMedPubMedCentral
2.
go back to reference Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB et al (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128:423–37CrossRefPubMedPubMedCentral Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB et al (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128:423–37CrossRefPubMedPubMedCentral
3.
go back to reference Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38CrossRefPubMedPubMedCentral Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38CrossRefPubMedPubMedCentral
5.
go back to reference Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al (2014) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–53CrossRefPubMedPubMedCentral Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al (2014) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–53CrossRefPubMedPubMedCentral
6.
go back to reference Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R et al (2015) TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 129:429–47CrossRefPubMedPubMedCentral Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R et al (2015) TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 129:429–47CrossRefPubMedPubMedCentral
7.
go back to reference Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17:201–7CrossRefPubMed Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17:201–7CrossRefPubMed
8.
go back to reference Cooper-Knock J, Kirby J, Highley R, Shaw PJ (2015) The spectrum of C9orf72-mediated neurodegeneration and amyotrophic lateral sclerosis. Neurotherapeutics 12:326–39CrossRefPubMedPubMedCentral Cooper-Knock J, Kirby J, Highley R, Shaw PJ (2015) The spectrum of C9orf72-mediated neurodegeneration and amyotrophic lateral sclerosis. Neurotherapeutics 12:326–39CrossRefPubMedPubMedCentral
9.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56CrossRefPubMedPubMedCentral DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56CrossRefPubMedPubMedCentral
10.
go back to reference DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153CrossRefPubMed DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153CrossRefPubMed
11.
go back to reference Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S et al (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10:R55CrossRefPubMedPubMedCentral Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S et al (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10:R55CrossRefPubMedPubMedCentral
12.
go back to reference Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–62CrossRefPubMedPubMedCentral Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–62CrossRefPubMedPubMedCentral
13.
go back to reference Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–91CrossRefPubMedPubMedCentral Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–91CrossRefPubMedPubMedCentral
14.
go back to reference Fathi D, Mohammadi B, Dengler R, Boselt S, Petri S, Kollewe K (2016) Lower motor neuron involvement in ALS assessed by motor unit number index (MUNIX): Long-term changes and reproducibility. Clin Neurophysiol 127:1984–8CrossRefPubMed Fathi D, Mohammadi B, Dengler R, Boselt S, Petri S, Kollewe K (2016) Lower motor neuron involvement in ALS assessed by motor unit number index (MUNIX): Long-term changes and reproducibility. Clin Neurophysiol 127:1984–8CrossRefPubMed
15.
go back to reference Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–19CrossRefPubMed Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–19CrossRefPubMed
18.
go back to reference Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28:559–76CrossRefPubMed Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28:559–76CrossRefPubMed
19.
go back to reference Grolez G, Moreau C, Danel-Brunaud V, Delmaire C, Lopes R, Pradat PF et al (2016) The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol 16:155CrossRefPubMedPubMedCentral Grolez G, Moreau C, Danel-Brunaud V, Delmaire C, Lopes R, Pradat PF et al (2016) The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol 16:155CrossRefPubMedPubMedCentral
20.
go back to reference Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P et al (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11:3CrossRefPubMedPubMedCentral Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P et al (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11:3CrossRefPubMedPubMedCentral
21.
go back to reference Ince PG, McArthur FK, Bjertness E, Torvik A, Candy JM, Edwardson JA (1995) Neuropathological diagnoses in elderly patients in Oslo: Alzheimer’s disease, Lewy body disease, vascular lesions. Dementia 6:162–8PubMed Ince PG, McArthur FK, Bjertness E, Torvik A, Candy JM, Edwardson JA (1995) Neuropathological diagnoses in elderly patients in Oslo: Alzheimer’s disease, Lewy body disease, vascular lesions. Dementia 6:162–8PubMed
22.
go back to reference Jaeger PA, Lucin KM, Britschgi M, Vardarajan B, Huang RP, Kirby ED et al (2016) Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol Neurodegener 11:31CrossRefPubMedPubMedCentral Jaeger PA, Lucin KM, Britschgi M, Vardarajan B, Huang RP, Kirby ED et al (2016) Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol Neurodegener 11:31CrossRefPubMedPubMedCentral
23.
go back to reference Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–16CrossRefPubMed Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–16CrossRefPubMed
24.
go back to reference Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86CrossRefPubMed Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86CrossRefPubMed
25.
go back to reference Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559CrossRef Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559CrossRef
26.
27.
go back to reference Liu X, Gao Z, Zhang L, Rattray M (2013) puma 3.0: improved uncertainty propagation methods for gene and transcript expression analysis. BMC Bioinf 14:39CrossRef Liu X, Gao Z, Zhang L, Rattray M (2013) puma 3.0: improved uncertainty propagation methods for gene and transcript expression analysis. BMC Bioinf 14:39CrossRef
28.
go back to reference Lombardo MV, Lai MC, Auyeung B, Holt RJ, Allison C, Smith P et al (2016) Unsupervised data-driven stratification of mentalizing heterogeneity in autism. Sci Rep 6:35333CrossRefPubMedPubMedCentral Lombardo MV, Lai MC, Auyeung B, Holt RJ, Allison C, Smith P et al (2016) Unsupervised data-driven stratification of mentalizing heterogeneity in autism. Sci Rep 6:35333CrossRefPubMedPubMedCentral
29.
go back to reference Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N et al (2015) Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–57CrossRefPubMedPubMedCentral Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N et al (2015) Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–57CrossRefPubMedPubMedCentral
30.
go back to reference Mackenzie IR, Frick P, Neumann M (2014) The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol 127:347–57CrossRefPubMed Mackenzie IR, Frick P, Neumann M (2014) The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol 127:347–57CrossRefPubMed
31.
go back to reference Melah KE, Lu SY, Hoscheidt SM, Alexander AL, Adluru N, Destiche DJ et al (2016) Cerebrospinal fluid markers of Alzheimer’s disease pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease. J Alzheimers Dis 50:873–86CrossRefPubMedPubMedCentral Melah KE, Lu SY, Hoscheidt SM, Alexander AL, Adluru N, Destiche DJ et al (2016) Cerebrospinal fluid markers of Alzheimer’s disease pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease. J Alzheimers Dis 50:873–86CrossRefPubMedPubMedCentral
32.
go back to reference Nalls MA, Bras J, Hernandez DG, Keller MF, Majounie E, Renton AE et al (2015) NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiol Aging 36:1605.e7–12CrossRef Nalls MA, Bras J, Hernandez DG, Keller MF, Majounie E, Renton AE et al (2015) NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiol Aging 36:1605.e7–12CrossRef
33.
go back to reference Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–3CrossRefPubMed Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–3CrossRefPubMed
34.
go back to reference Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C et al (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–91CrossRefPubMedPubMedCentral Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C et al (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–91CrossRefPubMedPubMedCentral
35.
go back to reference Piccio L, Cantoni C, Bollman B, Cignarella F, Mikesell R (2016) TREM2 regulates microglia activation in response to CNS demyelination. Mult Scler J 22:54–54 Piccio L, Cantoni C, Bollman B, Cignarella F, Mikesell R (2016) TREM2 regulates microglia activation in response to CNS demyelination. Mult Scler J 22:54–54
36.
go back to reference Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM et al (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–33CrossRefPubMed Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM et al (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–33CrossRefPubMed
37.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–75CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–75CrossRefPubMedPubMedCentral
38.
go back to reference Qureshi MM, Hayden D, Urbinelli L, Ferrante K, Newhall K, Myers D et al (2006) Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler 7:173–82CrossRefPubMed Qureshi MM, Hayden D, Urbinelli L, Ferrante K, Newhall K, Myers D et al (2006) Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler 7:173–82CrossRefPubMed
39.
go back to reference Raha AA, Henderson JW, Stott SR, Vuono R, Foscarin S, Friedland RP et al (2016) Neuroprotective Effect of TREM-2 in Aging and Alzheimer’s Disease Model. J Alzheimers Dis 55:199–217CrossRef Raha AA, Henderson JW, Stott SR, Vuono R, Foscarin S, Friedland RP et al (2016) Neuroprotective Effect of TREM-2 in Aging and Alzheimer’s Disease Model. J Alzheimers Dis 55:199–217CrossRef
40.
go back to reference Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H et al (2016) g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 44:W83CrossRefPubMedPubMedCentral Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H et al (2016) g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 44:W83CrossRefPubMedPubMedCentral
42.
go back to reference Salameh JS, Brown RH Jr, Berry JD (2015) Amyotrophic lateral sclerosis: review. Semin Neurol 35:469–76CrossRefPubMed Salameh JS, Brown RH Jr, Berry JD (2015) Amyotrophic lateral sclerosis: review. Semin Neurol 35:469–76CrossRefPubMed
43.
go back to reference Santiago JA, Potashkin JA (2014) A network approach to diagnostic biomarkers in progressive supranuclear palsy. Mov Disord 29:550–5CrossRefPubMed Santiago JA, Potashkin JA (2014) A network approach to diagnostic biomarkers in progressive supranuclear palsy. Mov Disord 29:550–5CrossRefPubMed
44.
go back to reference Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF et al (2009) Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics 10:405CrossRefPubMedPubMedCentral Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF et al (2009) Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics 10:405CrossRefPubMedPubMedCentral
45.
go back to reference Sochocka M, BS Diniz and J Leszek (2016) Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol Sochocka M, BS Diniz and J Leszek (2016) Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol
46.
go back to reference Suarez-Calvet M, Araque Caballero MA, Kleinberger G, Bateman RJ, Fagan AM, Morris JC et al (2016) Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med 8:369ra178CrossRefPubMed Suarez-Calvet M, Araque Caballero MA, Kleinberger G, Bateman RJ, Fagan AM, Morris JC et al (2016) Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med 8:369ra178CrossRefPubMed
47.
go back to reference Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D et al (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466–76CrossRefPubMedPubMedCentral Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D et al (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466–76CrossRefPubMedPubMedCentral
48.
go back to reference Sundarrajan S, Arumugam M (2016) Weighted gene co-expression based biomarker discovery for psoriasis detection. Gene 593:225–34CrossRefPubMed Sundarrajan S, Arumugam M (2016) Weighted gene co-expression based biomarker discovery for psoriasis detection. Gene 593:225–34CrossRefPubMed
49.
go back to reference Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–9CrossRefPubMed Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–9CrossRefPubMed
50.
go back to reference Turner MR, Gray E (2016) Are neurofilaments heading for the ALS clinic? J Neurol Neurosurg Psychiatry 87:3–4CrossRefPubMed Turner MR, Gray E (2016) Are neurofilaments heading for the ALS clinic? J Neurol Neurosurg Psychiatry 87:3–4CrossRefPubMed
51.
go back to reference von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124 von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124
52.
go back to reference Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–20CrossRefPubMedPubMedCentral Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–20CrossRefPubMedPubMedCentral
53.
go back to reference Wes PD, Sayed FA, Bard F, Gan L (2016) Targeting microglia for the treatment of Alzheimer’s Disease. Glia 64:1710–32CrossRefPubMed Wes PD, Sayed FA, Bard F, Gan L (2016) Targeting microglia for the treatment of Alzheimer’s Disease. Glia 64:1710–32CrossRefPubMed
54.
go back to reference Yang R, Daigle BJ Jr, Petzold LR, Doyle FJ 3rd (2012) Core module biomarker identification with network exploration for breast cancer metastasis. BMC Bioinf 13:12CrossRef Yang R, Daigle BJ Jr, Petzold LR, Doyle FJ 3rd (2012) Core module biomarker identification with network exploration for breast cancer metastasis. BMC Bioinf 13:12CrossRef
55.
go back to reference Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17PubMed Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17PubMed
Metadata
Title
A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis
Authors
Johnathan Cooper-Knock
Claire Green
Gabriel Altschuler
Wenbin Wei
Joanna J. Bury
Paul R. Heath
Matthew Wyles
Catherine Gelsthorpe
J. Robin Highley
Alejandro Lorente-Pons
Tim Beck
Kathryn Doyle
Karel Otero
Bryan Traynor
Janine Kirby
Pamela J. Shaw
Winston Hide
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2017
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-017-0424-x

Other articles of this Issue 1/2017

Acta Neuropathologica Communications 1/2017 Go to the issue