Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

A cross sectional analysis of behaviors related to operating gas stoves and pneumonia in U.S. children under the age of 5

Authors: Eric S Coker, Ellen Smit, Anna K Harding, John Molitor, Molly L Kile

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Poorly ventilated combustion stoves and pollutants emitted from combustion stoves increase the risk of acute lower respiratory illnesses (ALRI) in children living in developing countries but few studies have examined these issues in developed countries. Our objective is to investigate behaviors related to gas stove use, namely using them for heat and without ventilation, on the odds of pneumonia and cough in U.S. children.

Methods

The National Health and Nutrition Examination Survey (1988–1994) was used to identify children < 5 years who lived in homes with a gas stove and whose parents provided information on their behaviors when operating their gas stoves and data on pneumonia (N = 3,289) and cough (N = 3,127). Multivariate logistic regression models were used to examine the association between each respiratory outcome and using a gas stove for heat or without ventilation, as well as, the joint effect of both behaviors.

Results

The adjusted odds of parental-reported pneumonia (adjusted odds ratio [aOR] = 2.08, 95% confidence interval [CI]: 1.08, 4.03) and cough (aOR = 1.66, 95% CI: 1.14, 2.43) were higher among children who lived in homes where gas stoves were used for heat compared to those who lived in homes where gas stoves were only used for cooking. The odds of pneumonia (aOR = 1.76, 95% CI: 1.04, 2.98), but not cough (aOR = 1.23, 95% CI: 0.87, 1.75), was higher among those children whose parents did not report using ventilation when operating gas stoves compared to those who did use ventilation. When considering the joint association of both stove operating conditions, only children whose parents reported using gas stoves for heat without ventilation had significantly higher odds of pneumonia (aOR = 3.06, 95% CI: 1.32, 7.09) and coughing (aOR = 2.07, 95% CI: 1.29, 3.30) after adjusting for other risk factors.

Conclusions

Using gas stoves for heat without ventilation was associated with higher odds of pneumonia and cough among U.S. children less than five years old who live in homes with a gas stove. More research is needed to determine if emissions from gas stoves ventilation infrastructure, or modifiable behaviors contribute to respiratory infections in children.
Literature
1.
go back to reference Rudan I, O’Brien KL, Nair H, Liu L, Theodoratou E, Qazi S, et al. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health. 2013;3:10401.CrossRef Rudan I, O’Brien KL, Nair H, Liu L, Theodoratou E, Qazi S, et al. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health. 2013;3:10401.CrossRef
2.
go back to reference Centers for Disease Control and Prevention (CDC). VPD surveillance manual, 5th edition, pneumococcal disease: chapter 11–1. 12th edition. Atlanta, GA: Centers for Disease Control and Prevention; 2008. Centers for Disease Control and Prevention (CDC). VPD surveillance manual, 5th edition, pneumococcal disease: chapter 11–1. 12th edition. Atlanta, GA: Centers for Disease Control and Prevention; 2008.
3.
go back to reference Centers for Disease Control and Prevention (CDC). Pneumonia hospitalizations among young children before and after introduction of pneumococcal conjugate vaccine--United States, 1997–2006. MMWR Morb Mortal Wkly Rep. 2009;58:1–4. Centers for Disease Control and Prevention (CDC). Pneumonia hospitalizations among young children before and after introduction of pneumococcal conjugate vaccine--United States, 1997–2006. MMWR Morb Mortal Wkly Rep. 2009;58:1–4.
4.
go back to reference Talan DA, Moran GJ, Pinner RW. Progress toward eliminating Haemophilus influenzae type b disease among infants and children–United States, 1987–1997. Ann Emerg Med. 1999;34:109–11.CrossRefPubMed Talan DA, Moran GJ, Pinner RW. Progress toward eliminating Haemophilus influenzae type b disease among infants and children–United States, 1987–1997. Ann Emerg Med. 1999;34:109–11.CrossRefPubMed
5.
go back to reference Gern JE, Rosenthal LA, Sorkness RL, Lemanske Jr RF. Effects of viral respiratory infections on lung development and childhood asthma. J Allergy Clin Immunol. 2005;115:668–74. quiz 675.CrossRefPubMed Gern JE, Rosenthal LA, Sorkness RL, Lemanske Jr RF. Effects of viral respiratory infections on lung development and childhood asthma. J Allergy Clin Immunol. 2005;115:668–74. quiz 675.CrossRefPubMed
7.
go back to reference Sly PD, Kusel M, Holt PG. Do early-life viral infections cause asthma? J Allergy Clin Immunol. 2010;125:1202–5.CrossRefPubMed Sly PD, Kusel M, Holt PG. Do early-life viral infections cause asthma? J Allergy Clin Immunol. 2010;125:1202–5.CrossRefPubMed
8.
go back to reference Jackson S, Mathews KH, Pulanić D, Falconer R, Rudan I, Campbell H, et al. Risk factors for severe acute lower respiratory infections in children – a systematic review and meta-analysis. Croat Med J. 2013;54:110–21.CrossRefPubMedPubMedCentral Jackson S, Mathews KH, Pulanić D, Falconer R, Rudan I, Campbell H, et al. Risk factors for severe acute lower respiratory infections in children – a systematic review and meta-analysis. Croat Med J. 2013;54:110–21.CrossRefPubMedPubMedCentral
9.
go back to reference Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ. 2008;86:390–8C.CrossRefPubMedPubMedCentral Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ. 2008;86:390–8C.CrossRefPubMedPubMedCentral
10.
go back to reference Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspect. 2002;110:1057–68.CrossRefPubMedPubMedCentral Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspect. 2002;110:1057–68.CrossRefPubMedPubMedCentral
11.
go back to reference Smith KR, Mehta S. The burden of diseae from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Env Health. 2003;206:279–89.CrossRef Smith KR, Mehta S. The burden of diseae from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Env Health. 2003;206:279–89.CrossRef
12.
go back to reference Baxter LK, Clougherty JE, Laden F, Levy JI. Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. J Expo Sci Environ Epidemiol. 2006;17:433–44.CrossRefPubMed Baxter LK, Clougherty JE, Laden F, Levy JI. Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. J Expo Sci Environ Epidemiol. 2006;17:433–44.CrossRefPubMed
13.
go back to reference Hansel NN, Breysse PN, McCormack MC, Matsui EC, Curtin-Brosnan J, Williams DL, et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect. 2008;116:1428–32.CrossRefPubMedPubMedCentral Hansel NN, Breysse PN, McCormack MC, Matsui EC, Curtin-Brosnan J, Williams DL, et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect. 2008;116:1428–32.CrossRefPubMedPubMedCentral
14.
go back to reference Loo CKJ, Foty RG, Wheeler AJ, Miller JD, Evans G, Stieb DM, et al. Do questions reflecting indoor Air pollutant exposure from a questionnaire predict direct measure of exposure in owner-occupied houses? Int J Environ Res Public Health. 2010;7:3270–97.CrossRefPubMedPubMedCentral Loo CKJ, Foty RG, Wheeler AJ, Miller JD, Evans G, Stieb DM, et al. Do questions reflecting indoor Air pollutant exposure from a questionnaire predict direct measure of exposure in owner-occupied houses? Int J Environ Res Public Health. 2010;7:3270–97.CrossRefPubMedPubMedCentral
15.
go back to reference Semple S, Garden C, Coggins M, Galea KS, Whelan P, Cowie H, et al. Contribution of solid fuel, gas combustion, or tobacco smoke to indoor air pollutant concentrations in Irish and Scottish homes: Indoor air pollutant concentrations in Irish and Scottish homes. Indoor Air. 2012;22:212–23.CrossRefPubMed Semple S, Garden C, Coggins M, Galea KS, Whelan P, Cowie H, et al. Contribution of solid fuel, gas combustion, or tobacco smoke to indoor air pollutant concentrations in Irish and Scottish homes: Indoor air pollutant concentrations in Irish and Scottish homes. Indoor Air. 2012;22:212–23.CrossRefPubMed
16.
go back to reference Wallace LA, Emmerich SJ, Howard-Reed C. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ Sci Technol. 2004;38:2304–11.CrossRefPubMed Wallace LA, Emmerich SJ, Howard-Reed C. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ Sci Technol. 2004;38:2304–11.CrossRefPubMed
17.
go back to reference Wallace L, Wang F, Howard-Reed C, Persily A. Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 and 64 nm: size distributions and emission and coagulation remission and coagulation rates. Environ Sci Technol. 2008;42:8641–7.CrossRefPubMed Wallace L, Wang F, Howard-Reed C, Persily A. Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 and 64 nm: size distributions and emission and coagulation remission and coagulation rates. Environ Sci Technol. 2008;42:8641–7.CrossRefPubMed
19.
go back to reference Casas L, Tischer C, Tiesler C, Brüske I, Koletzko S, Bauer C-P, et al. Association of gas cooking with children’s respiratory health: results from GINIplus and LISAplus birth cohort studies: gas cooking and children’s respiratory health. Indoor Air. 2012;22:476–82.CrossRefPubMed Casas L, Tischer C, Tiesler C, Brüske I, Koletzko S, Bauer C-P, et al. Association of gas cooking with children’s respiratory health: results from GINIplus and LISAplus birth cohort studies: gas cooking and children’s respiratory health. Indoor Air. 2012;22:476–82.CrossRefPubMed
20.
go back to reference Lin W, Brunekreef B, Gehring U. Meta-analysis of the effects of indoor nitrogen dioxide and gas cooking on asthma and wheeze in children. Int J Epidemiol. 2013;42:1724–37.CrossRefPubMed Lin W, Brunekreef B, Gehring U. Meta-analysis of the effects of indoor nitrogen dioxide and gas cooking on asthma and wheeze in children. Int J Epidemiol. 2013;42:1724–37.CrossRefPubMed
21.
go back to reference Moshammer H, Fletcher T, Heinrich J, Hoek G, Hruba F, Pattenden S, et al. Gas cooking is associated with small reductions in lung function in children. Eur Respir J. 2010;36:249–54.CrossRefPubMed Moshammer H, Fletcher T, Heinrich J, Hoek G, Hruba F, Pattenden S, et al. Gas cooking is associated with small reductions in lung function in children. Eur Respir J. 2010;36:249–54.CrossRefPubMed
22.
go back to reference Kile ML, Coker ES, Smit E, Sudakin D, Molitor J, Harding AK. A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health Glob Access Sci Source. 2014;13:71. Kile ML, Coker ES, Smit E, Sudakin D, Molitor J, Harding AK. A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health Glob Access Sci Source. 2014;13:71.
23.
go back to reference Lanphear BP, Aligne CA, Auinger P, Weitzman M, Byrd RS. Residential exposures associated with asthma in US children. Pediatrics. 2001;107:505–11.CrossRefPubMed Lanphear BP, Aligne CA, Auinger P, Weitzman M, Byrd RS. Residential exposures associated with asthma in US children. Pediatrics. 2001;107:505–11.CrossRefPubMed
24.
go back to reference Aldous MB, Holberg CJ, Wright AL, Martinez FD, Taussig LM. Evaporative cooling and other home factors and lower respiratory tract illness during the first year of life. Group Health Medical Assoc Am J Epidemiol. 1996;143:423–30. Aldous MB, Holberg CJ, Wright AL, Martinez FD, Taussig LM. Evaporative cooling and other home factors and lower respiratory tract illness during the first year of life. Group Health Medical Assoc Am J Epidemiol. 1996;143:423–30.
25.
go back to reference Belanger K, Gent JF, Triche EW, Bracken MB, Leaderer BP. Association of indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma. Am J Respir Crit Care Med. 2006;173:297–303.CrossRefPubMed Belanger K, Gent JF, Triche EW, Bracken MB, Leaderer BP. Association of indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma. Am J Respir Crit Care Med. 2006;173:297–303.CrossRefPubMed
26.
go back to reference Burr ML, Anderson HR, Austin JB, Harkins LS, Kaur B, Strachan DP, et al. Respiratory symptoms and home environment in children: a national survey. Thorax. 1999;54:27–32.CrossRefPubMedPubMedCentral Burr ML, Anderson HR, Austin JB, Harkins LS, Kaur B, Strachan DP, et al. Respiratory symptoms and home environment in children: a national survey. Thorax. 1999;54:27–32.CrossRefPubMedPubMedCentral
27.
go back to reference Dockery DW, Speizer FE, Stram DO, Ware JH, Spengler JD, Ferris Jr BG. Effects of inhalable particles on respiratory health of children. Am Rev Respir Dis. 1989;139:587–94.CrossRefPubMed Dockery DW, Speizer FE, Stram DO, Ware JH, Spengler JD, Ferris Jr BG. Effects of inhalable particles on respiratory health of children. Am Rev Respir Dis. 1989;139:587–94.CrossRefPubMed
28.
go back to reference Holscher B, Heinrich J, Jacob B, Ritz B, Wichmann HE. Gas cooking, respiratory health and white blood cell counts in children. Int J Hyg Environ Health. 2000;203:29–37.CrossRefPubMed Holscher B, Heinrich J, Jacob B, Ritz B, Wichmann HE. Gas cooking, respiratory health and white blood cell counts in children. Int J Hyg Environ Health. 2000;203:29–37.CrossRefPubMed
29.
go back to reference Marks GB, Ezz W, Aust N, Toelle BG, Xuan W, Belousova E, et al. Respiratory health effects of exposure to low-NOx unflued gas heaters in the classroom: a double-blind, cluster-randomized, crossover study. Environ Health Perspect. 2010;118:1476–82.CrossRefPubMedPubMedCentral Marks GB, Ezz W, Aust N, Toelle BG, Xuan W, Belousova E, et al. Respiratory health effects of exposure to low-NOx unflued gas heaters in the classroom: a double-blind, cluster-randomized, crossover study. Environ Health Perspect. 2010;118:1476–82.CrossRefPubMedPubMedCentral
30.
go back to reference Sunyer J. Nitrogen dioxide is not associated with respiratory infection during the first year of life. Int J Epidemiol. 2004;33:116–20.CrossRefPubMed Sunyer J. Nitrogen dioxide is not associated with respiratory infection during the first year of life. Int J Epidemiol. 2004;33:116–20.CrossRefPubMed
31.
go back to reference Volkmer RE, Ruffin RE, Wigg NR, Davies N. The prevalence of respiratory symptoms in South Australian preschool children. II. Factors associated with indoor air quality. J Paediatr Child Health. 1995;31:116–20.CrossRefPubMed Volkmer RE, Ruffin RE, Wigg NR, Davies N. The prevalence of respiratory symptoms in South Australian preschool children. II. Factors associated with indoor air quality. J Paediatr Child Health. 1995;31:116–20.CrossRefPubMed
32.
go back to reference Ware JH, Dockery DW, Spiro 3rd A, Speizer FE, Ferris Jr BG. Passive smoking, gas cooking, and respiratory health of children living in six cities. Am Rev Respir Dis. 1984;129:366–74.PubMed Ware JH, Dockery DW, Spiro 3rd A, Speizer FE, Ferris Jr BG. Passive smoking, gas cooking, and respiratory health of children living in six cities. Am Rev Respir Dis. 1984;129:366–74.PubMed
33.
go back to reference Acevedo-Bolton V, Cheng K-C, Jiang R-T, Ott WR, Klepeis NE, Hildemann LM. Measurement of the proximity effect for indoor air pollutant sources in two homes. J Environ Monit. 2012;14:94.CrossRefPubMed Acevedo-Bolton V, Cheng K-C, Jiang R-T, Ott WR, Klepeis NE, Hildemann LM. Measurement of the proximity effect for indoor air pollutant sources in two homes. J Environ Monit. 2012;14:94.CrossRefPubMed
34.
go back to reference Barnes BR, Mathee A, Shafritz LB, Krieger L, Zimicki S. A behavioral intervention to reduce child exposure to indoor air pollution: identifying possible target behaviors. Health Educ Behav Off Publ Soc Public Health Educ. 2004;31:306–17.CrossRef Barnes BR, Mathee A, Shafritz LB, Krieger L, Zimicki S. A behavioral intervention to reduce child exposure to indoor air pollution: identifying possible target behaviors. Health Educ Behav Off Publ Soc Public Health Educ. 2004;31:306–17.CrossRef
35.
go back to reference Cyrys J, Heinrich J, Richter K, Wölke G, Wichmann HE. Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany). Sci Total Environ. 2000;250:51–62.CrossRefPubMed Cyrys J, Heinrich J, Richter K, Wölke G, Wichmann HE. Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany). Sci Total Environ. 2000;250:51–62.CrossRefPubMed
36.
go back to reference Diette GB, Hansel NN, Buckley TJ, Curtin-Brosnan J, Eggleston PA, Matsui EC, et al. Home indoor pollutant exposures among inner-city children with and without asthma. Environ Health Perspect. 2007;115:1665–9.CrossRefPubMedPubMedCentral Diette GB, Hansel NN, Buckley TJ, Curtin-Brosnan J, Eggleston PA, Matsui EC, et al. Home indoor pollutant exposures among inner-city children with and without asthma. Environ Health Perspect. 2007;115:1665–9.CrossRefPubMedPubMedCentral
37.
go back to reference García Algar O, Pichini S, Basagaña X, Puig C, Vall O, Torrent M, et al. Concentrations and determinants of NO2 in homes of Ashford, UK and Barcelona and Menorca, Spain. Indoor Air. 2004;14:298–304.CrossRefPubMed García Algar O, Pichini S, Basagaña X, Puig C, Vall O, Torrent M, et al. Concentrations and determinants of NO2 in homes of Ashford, UK and Barcelona and Menorca, Spain. Indoor Air. 2004;14:298–304.CrossRefPubMed
38.
go back to reference Linaker CH, Chauhan AJ, Inskip H, Frew A, Sillence A, Coggon D. Holgate: Distribution and determinants of personal exposure to nitrogen dioxide in school children. Occup Environ Med. 1996;53:200–3.CrossRefPubMedPubMedCentral Linaker CH, Chauhan AJ, Inskip H, Frew A, Sillence A, Coggon D. Holgate: Distribution and determinants of personal exposure to nitrogen dioxide in school children. Occup Environ Med. 1996;53:200–3.CrossRefPubMedPubMedCentral
39.
40.
go back to reference Wong TW, Yu TS, Liu HJ, Wong AHS. Household gas cooking: a risk factor for respiratory illnesses in preschool children. Arch Dis Child. 2004;89:631–6.CrossRefPubMedPubMedCentral Wong TW, Yu TS, Liu HJ, Wong AHS. Household gas cooking: a risk factor for respiratory illnesses in preschool children. Arch Dis Child. 2004;89:631–6.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang Q, Gangupomu RH, Ramirez D, Zhu Y. Measurement of ultrafine particles and other Air pollutants emitted by cooking activities. Int J Environ Res Public Health. 2010;7:1744–59.CrossRefPubMedPubMedCentral Zhang Q, Gangupomu RH, Ramirez D, Zhu Y. Measurement of ultrafine particles and other Air pollutants emitted by cooking activities. Int J Environ Res Public Health. 2010;7:1744–59.CrossRefPubMedPubMedCentral
42.
go back to reference Clougherty JE, Houseman EA, Levy JI. Source apportionment of indoor residential fine particulate matter using land use regression and constrained factor analysis: indoor-source apportionment using LUR and factor analysis. Indoor Air. 2011;21:53–66.CrossRefPubMed Clougherty JE, Houseman EA, Levy JI. Source apportionment of indoor residential fine particulate matter using land use regression and constrained factor analysis: indoor-source apportionment using LUR and factor analysis. Indoor Air. 2011;21:53–66.CrossRefPubMed
43.
go back to reference Dassen WG, Matsuki H, Kasuga H, Misawa K, Yokoyama H, Shimizu Y. Determinants of indoor NO2-concentration and the personal exposures of children and their mothers in Japanese homes. Tokai J Exp Clin Med. 1987;12:83–95.PubMed Dassen WG, Matsuki H, Kasuga H, Misawa K, Yokoyama H, Shimizu Y. Determinants of indoor NO2-concentration and the personal exposures of children and their mothers in Japanese homes. Tokai J Exp Clin Med. 1987;12:83–95.PubMed
44.
go back to reference Matsuki H, Kasuga H, Osaka F, Yanagisawa Y, Nishimura H. A comparative study on the health effects of smoking and indoor air pollution in summer and winter. Tokai J Exp Clin Med. 1985;10:427–37.PubMed Matsuki H, Kasuga H, Osaka F, Yanagisawa Y, Nishimura H. A comparative study on the health effects of smoking and indoor air pollution in summer and winter. Tokai J Exp Clin Med. 1985;10:427–37.PubMed
45.
go back to reference Rim D, Wallace L, Nabinger S, Persily A. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position. Sci Total Environ. 2012;432:350–6.CrossRefPubMed Rim D, Wallace L, Nabinger S, Persily A. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position. Sci Total Environ. 2012;432:350–6.CrossRefPubMed
46.
go back to reference Zota A, Adamkiewicz G, Levy JI, Spengler JD. Ventilation in public housing: implications for indoor nitrogen dioxide concentrations. Indoor Air. 2005;15:393–401.CrossRefPubMed Zota A, Adamkiewicz G, Levy JI, Spengler JD. Ventilation in public housing: implications for indoor nitrogen dioxide concentrations. Indoor Air. 2005;15:393–401.CrossRefPubMed
47.
go back to reference Logue JM, Klepeis NE, Lobscheid AB, Singer BC. Pollutant exposures from natural gas cooking burners: a simulation-based assessment for southern California. Environ Health Perspect. 2013;122:43–50.PubMedPubMedCentral Logue JM, Klepeis NE, Lobscheid AB, Singer BC. Pollutant exposures from natural gas cooking burners: a simulation-based assessment for southern California. Environ Health Perspect. 2013;122:43–50.PubMedPubMedCentral
48.
go back to reference Centers for Disease Control and Prevention (CDC). Use of unvented residential heating appliances--United States, 1988–1994. MMWR Morb Mortal Wkly Rep. 1997;46:1221–4. Centers for Disease Control and Prevention (CDC). Use of unvented residential heating appliances--United States, 1988–1994. MMWR Morb Mortal Wkly Rep. 1997;46:1221–4.
50.
go back to reference Chantry CJ. Full breastfeeding duration and associated decrease in respiratory tract infection in US children. Pediatrics. 2006;117:425–32.CrossRefPubMed Chantry CJ. Full breastfeeding duration and associated decrease in respiratory tract infection in US children. Pediatrics. 2006;117:425–32.CrossRefPubMed
51.
go back to reference Quraishi SA, Bittner EA, Christopher KB, Camargo CA. Vitamin D status and community-acquired pneumonia: results from the third national health and nutrition examination survey. PLoS One. 2013;8:e81120.CrossRefPubMedPubMedCentral Quraishi SA, Bittner EA, Christopher KB, Camargo CA. Vitamin D status and community-acquired pneumonia: results from the third national health and nutrition examination survey. PLoS One. 2013;8:e81120.CrossRefPubMedPubMedCentral
53.
go back to reference Neuman MI, Shah SS, Shapiro DJ, Hersh AL. Emergency department management of childhood pneumonia in the United States prior to publication of national guidelines. Acad Emerg Med. 2013;20:240–6.CrossRefPubMed Neuman MI, Shah SS, Shapiro DJ, Hersh AL. Emergency department management of childhood pneumonia in the United States prior to publication of national guidelines. Acad Emerg Med. 2013;20:240–6.CrossRefPubMed
54.
go back to reference Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis. 2010;50:1439–47.CrossRefPubMed Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis. 2010;50:1439–47.CrossRefPubMed
55.
go back to reference Jin Y, Ma X, Chen X, Cheng Y, Baris E, Ezzati M. Exposure to indoor air pollution from household energy use in rural China: the interactions of technology, behavior, and knowledge in health risk management. Soc Sci Med. 2006;62:3161–76.CrossRefPubMed Jin Y, Ma X, Chen X, Cheng Y, Baris E, Ezzati M. Exposure to indoor air pollution from household energy use in rural China: the interactions of technology, behavior, and knowledge in health risk management. Soc Sci Med. 2006;62:3161–76.CrossRefPubMed
56.
go back to reference Behrens T, Maziak W, Weiland SK, Rzehak P, Siebert E, Keil U. Symptoms of asthma and the home environment. The ISAAC I and III cross-sectional surveys in Münster, Germany. Int Arch Allergy Immunol. 2005;137:53–61.CrossRefPubMed Behrens T, Maziak W, Weiland SK, Rzehak P, Siebert E, Keil U. Symptoms of asthma and the home environment. The ISAAC I and III cross-sectional surveys in Münster, Germany. Int Arch Allergy Immunol. 2005;137:53–61.CrossRefPubMed
57.
go back to reference Belanger K. Symptoms of wheeze and persistent cough in the first year of life: associations with indoor allergens, Air contaminants, and maternal history of asthma. Am J Epidemiol. 2003;158:195–202.CrossRefPubMed Belanger K. Symptoms of wheeze and persistent cough in the first year of life: associations with indoor allergens, Air contaminants, and maternal history of asthma. Am J Epidemiol. 2003;158:195–202.CrossRefPubMed
58.
go back to reference Berkey CS, Ware JH, Dockery DW, Ferris BG, Speizer FE. Indoor air pollution and pulmonary function growth in preadolescent children. Am J Epidemiol. 1986;123:250–60.PubMed Berkey CS, Ware JH, Dockery DW, Ferris BG, Speizer FE. Indoor air pollution and pulmonary function growth in preadolescent children. Am J Epidemiol. 1986;123:250–60.PubMed
59.
go back to reference Corbo GM, Forastiere F, Agabiti N, Dell’Orco V, Pistelli R, Aebischer ML, et al. Effect of gas cooking on lung function in adolescents: modifying role of sex and immunoglobulin E. Thorax. 2001;56:536–40.CrossRefPubMedPubMedCentral Corbo GM, Forastiere F, Agabiti N, Dell’Orco V, Pistelli R, Aebischer ML, et al. Effect of gas cooking on lung function in adolescents: modifying role of sex and immunoglobulin E. Thorax. 2001;56:536–40.CrossRefPubMedPubMedCentral
60.
go back to reference De Bilderling G, Chauhan AJ, Jeffs JAR, Withers N, Johnston SL, Holgate ST, et al. Gas cooking and smoking habits and the risk of childhood and adolescent wheeze. Am J Epidemiol. 2005;162:513–22.CrossRefPubMed De Bilderling G, Chauhan AJ, Jeffs JAR, Withers N, Johnston SL, Holgate ST, et al. Gas cooking and smoking habits and the risk of childhood and adolescent wheeze. Am J Epidemiol. 2005;162:513–22.CrossRefPubMed
61.
go back to reference Garrett MH, Hooper MA, Hooper BM, Abramson MJ. Respiratory symptoms in children and indoor exposure to nitrogen dioxide and gas stoves. Am J Respir Crit Care Med. 1998;158:891–5.CrossRefPubMed Garrett MH, Hooper MA, Hooper BM, Abramson MJ. Respiratory symptoms in children and indoor exposure to nitrogen dioxide and gas stoves. Am J Respir Crit Care Med. 1998;158:891–5.CrossRefPubMed
62.
go back to reference Jarvis D, Chinn S, Luczynska C, Burney P. Association of respiratory symptoms and lung function in young adults with use of domestic gas appliances. Lancet. 1996;347:426–31.CrossRefPubMed Jarvis D, Chinn S, Luczynska C, Burney P. Association of respiratory symptoms and lung function in young adults with use of domestic gas appliances. Lancet. 1996;347:426–31.CrossRefPubMed
63.
go back to reference Pershagen G, Rylander E, Norberg S, Eriksson M, Nordvall SL. Air pollution involving nitrogen dioxide exposure and wheezing bronchitis in children. Int J Epidemiol. 1995;24:1147–53.CrossRefPubMed Pershagen G, Rylander E, Norberg S, Eriksson M, Nordvall SL. Air pollution involving nitrogen dioxide exposure and wheezing bronchitis in children. Int J Epidemiol. 1995;24:1147–53.CrossRefPubMed
64.
go back to reference MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE project. Environ Health Perspect. 2014;1:107–13. MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE project. Environ Health Perspect. 2014;1:107–13.
65.
go back to reference Paulin LM, Diette GB, Scott M, McCormack MC, Matsui EC, Curtin-Brosnan J, et al. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations. Indoor Air. 2014;24:416–24.CrossRefPubMedPubMedCentral Paulin LM, Diette GB, Scott M, McCormack MC, Matsui EC, Curtin-Brosnan J, et al. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations. Indoor Air. 2014;24:416–24.CrossRefPubMedPubMedCentral
66.
go back to reference Fabian MP, Stout NK, Adamkiewicz G, Geggel A, Ren C, Sandel M, et al. The effects of indoor environmental exposures on pediatric asthma: a discrete event simulation model. Environ Health Glob Access Sci Source. 2012;11:66. Fabian MP, Stout NK, Adamkiewicz G, Geggel A, Ren C, Sandel M, et al. The effects of indoor environmental exposures on pediatric asthma: a discrete event simulation model. Environ Health Glob Access Sci Source. 2012;11:66.
67.
go back to reference Fabian MP, Adamkiewicz G, Stout NK, Sandel M, Levy JI. A simulation model of building intervention impacts on indoor environmental quality, pediatric asthma, and costs. J Allergy Clin Immunol. 2014;133:77–84.CrossRefPubMed Fabian MP, Adamkiewicz G, Stout NK, Sandel M, Levy JI. A simulation model of building intervention impacts on indoor environmental quality, pediatric asthma, and costs. J Allergy Clin Immunol. 2014;133:77–84.CrossRefPubMed
68.
go back to reference Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, et al. Early life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect. 2012;3:387–92.CrossRef Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, et al. Early life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect. 2012;3:387–92.CrossRef
69.
go back to reference Fusco D, Forastiere F, Michelozzi P, Spadea T, Ostro B, Arcà M, et al. Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2001;17:1143–50. Fusco D, Forastiere F, Michelozzi P, Spadea T, Ostro B, Arcà M, et al. Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2001;17:1143–50.
70.
go back to reference Neas LM, Dockery DW, Ware JH, Spengler JD, Speizer FE, Ferris Jr BG. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children. Am J Epidemiol. 1991;134:204–19.PubMed Neas LM, Dockery DW, Ware JH, Spengler JD, Speizer FE, Ferris Jr BG. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children. Am J Epidemiol. 1991;134:204–19.PubMed
71.
go back to reference Ngo L, Mehta S, Do D, Thach T. The effects of short-term exposure on hospital admissions for acute lower respiratory infections in young children of Ho Chi Minh City, Viet Nam. Epidemiology. 2011;22:S228–9.CrossRef Ngo L, Mehta S, Do D, Thach T. The effects of short-term exposure on hospital admissions for acute lower respiratory infections in young children of Ho Chi Minh City, Viet Nam. Epidemiology. 2011;22:S228–9.CrossRef
72.
go back to reference Speizer FE, Ferris Jr B, Bishop YM, Spengler J. Respiratory disease rates and pulmonary function in children associated with NO2 exposure. Am Rev Respir Dis. 1980;121:3–10.PubMed Speizer FE, Ferris Jr B, Bishop YM, Spengler J. Respiratory disease rates and pulmonary function in children associated with NO2 exposure. Am Rev Respir Dis. 1980;121:3–10.PubMed
73.
go back to reference Tramuto F, Cusimano R, Cerame G, Vultaggio M, Calamusa G, Maida CM, et al. Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy. Environ Health. 2011;10:31.CrossRefPubMedPubMedCentral Tramuto F, Cusimano R, Cerame G, Vultaggio M, Calamusa G, Maida CM, et al. Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy. Environ Health. 2011;10:31.CrossRefPubMedPubMedCentral
74.
go back to reference Wong TW, Lau TS, Yu TS, Neller A, Wong SL, Tam W, et al. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occup Environ Med. 1999;56:679–83.CrossRefPubMedPubMedCentral Wong TW, Lau TS, Yu TS, Neller A, Wong SL, Tam W, et al. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occup Environ Med. 1999;56:679–83.CrossRefPubMedPubMedCentral
75.
go back to reference Wong C-M, Thach TQ, Chau PYK, Chan EKP, Chung RY, Ou C-Q, et al. Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong. Res Rep Health Eff Inst. 2010;154:283–362. Wong C-M, Thach TQ, Chau PYK, Chan EKP, Chung RY, Ou C-Q, et al. Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong. Res Rep Health Eff Inst. 2010;154:283–362.
76.
go back to reference Ciencewicki J, Jaspers I. Air pollution and respiratory viral infection. Inhal Toxicol. 2007;19:1135–46.CrossRefPubMed Ciencewicki J, Jaspers I. Air pollution and respiratory viral infection. Inhal Toxicol. 2007;19:1135–46.CrossRefPubMed
77.
go back to reference Devalia JL, Bayram H, Rusznak C, Calderón M, Sapsford RJ, Abdelaziz MA, et al. Mechanisms of pollution-induced airway disease: in vitro studies in the upper and lower airways. Allergy. 1997;52(38 Suppl):45–51. discussion 57–58.CrossRefPubMed Devalia JL, Bayram H, Rusznak C, Calderón M, Sapsford RJ, Abdelaziz MA, et al. Mechanisms of pollution-induced airway disease: in vitro studies in the upper and lower airways. Allergy. 1997;52(38 Suppl):45–51. discussion 57–58.CrossRefPubMed
78.
go back to reference Spannhake EW, Reddy SPM, Jacoby DB, Yu X-Y, Saatian B, Tian J. Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ Health Perspect. 2002;110:665–70.CrossRefPubMedPubMedCentral Spannhake EW, Reddy SPM, Jacoby DB, Yu X-Y, Saatian B, Tian J. Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ Health Perspect. 2002;110:665–70.CrossRefPubMedPubMedCentral
79.
go back to reference Becker S, Soukup JM. Effect of nitrogen dioxide on respiratory viral infection in airway epithelial cells. Environ Res. 1999;81:159–66.CrossRefPubMed Becker S, Soukup JM. Effect of nitrogen dioxide on respiratory viral infection in airway epithelial cells. Environ Res. 1999;81:159–66.CrossRefPubMed
80.
go back to reference Rose RM, Fuglestad JM, Skornik WA, Hammer SM, Wolfthal SF, Beck BD, et al. The pathophysiology of enhanced susceptibility to murine cytomegalovirus respiratory infection during short-term exposure to 5 ppm nitrogen dioxide. Am Rev Respir Dis. 1988;137:912–7.CrossRefPubMed Rose RM, Fuglestad JM, Skornik WA, Hammer SM, Wolfthal SF, Beck BD, et al. The pathophysiology of enhanced susceptibility to murine cytomegalovirus respiratory infection during short-term exposure to 5 ppm nitrogen dioxide. Am Rev Respir Dis. 1988;137:912–7.CrossRefPubMed
81.
go back to reference Becker S, Soukup JM. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J Toxicol Environ Health A. 1999;57:445–57.CrossRefPubMed Becker S, Soukup JM. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J Toxicol Environ Health A. 1999;57:445–57.CrossRefPubMed
82.
go back to reference Jakab GJ. Modulation of pulmonary defense mechanisms against viral and bacterial infections by acute exposures to nitrogen dioxide. Res Rep Health Eff Inst. 1988;20:1–38. Jakab GJ. Modulation of pulmonary defense mechanisms against viral and bacterial infections by acute exposures to nitrogen dioxide. Res Rep Health Eff Inst. 1988;20:1–38.
83.
go back to reference Djuardi Y, Wibowo H, Supali T, Ariawan I, Bredius RGM, Yazdanbakhsh M, et al. Determinants of the relationship between cytokine production in pregnant women and their infants. PLoS One. 2009;4:e7711.CrossRefPubMedPubMedCentral Djuardi Y, Wibowo H, Supali T, Ariawan I, Bredius RGM, Yazdanbakhsh M, et al. Determinants of the relationship between cytokine production in pregnant women and their infants. PLoS One. 2009;4:e7711.CrossRefPubMedPubMedCentral
84.
go back to reference Neuzil KM, Tang YW, Graham BS. Protective Role of TNF-alpha in respiratory syncytial virus infection in vitro and in vivo. Am J Med Sci. 1996;311:201–4.PubMed Neuzil KM, Tang YW, Graham BS. Protective Role of TNF-alpha in respiratory syncytial virus infection in vitro and in vivo. Am J Med Sci. 1996;311:201–4.PubMed
85.
go back to reference Duramad P, Harley K, Lipsett M, Bradman A, Eskenazi B, Holland NT, et al. Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24-month-old children living in an agricultural area. Environ Health Perspect. 2006;114:1916–22.PubMedPubMedCentral Duramad P, Harley K, Lipsett M, Bradman A, Eskenazi B, Holland NT, et al. Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24-month-old children living in an agricultural area. Environ Health Perspect. 2006;114:1916–22.PubMedPubMedCentral
86.
go back to reference Hassan MA, Eldin AME, Ahmed MM. T - helper2 /T - helper1 imbalance in respiratory syncytial virus bronchiolitis in relation to disease severity and outcome. Egypt J Immunol Egypt Assoc Immunol. 2008;15:153–60. Hassan MA, Eldin AME, Ahmed MM. T - helper2 /T - helper1 imbalance in respiratory syncytial virus bronchiolitis in relation to disease severity and outcome. Egypt J Immunol Egypt Assoc Immunol. 2008;15:153–60.
87.
go back to reference Kang C-I, Rouse MS, Patel R, Kita H, Juhn YJ. Allergic airway inflammation and susceptibility to pneumococcal pneumonia in a murine model with real-time in vivo evaluation. Clin Exp Immunol. 2009;156:552–61.CrossRefPubMedPubMedCentral Kang C-I, Rouse MS, Patel R, Kita H, Juhn YJ. Allergic airway inflammation and susceptibility to pneumococcal pneumonia in a murine model with real-time in vivo evaluation. Clin Exp Immunol. 2009;156:552–61.CrossRefPubMedPubMedCentral
89.
go back to reference Klug V, Lobscheid AB, Singer BC. Cooking appliance use in California homes—data collected from a Web-based survey. Berkeley, California: Lawrence Berkeley National Laboratory; 2011. p. 1–39.CrossRef Klug V, Lobscheid AB, Singer BC. Cooking appliance use in California homes—data collected from a Web-based survey. Berkeley, California: Lawrence Berkeley National Laboratory; 2011. p. 1–39.CrossRef
Metadata
Title
A cross sectional analysis of behaviors related to operating gas stoves and pneumonia in U.S. children under the age of 5
Authors
Eric S Coker
Ellen Smit
Anna K Harding
John Molitor
Molly L Kile
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-1425-y

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue