Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Original research

A convenient and efficient total solid-phase synthesis of DOTA-functionalized tumor-targeting peptides for PET imaging of cancer

Authors: Subhani M. Okarvi, Ibrahim AlJammaz

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Introduction

An efficient and cost-effective synthesis of the metal chelating agents that couple to tumor-targeting peptides is required to enhance the process of preclinical research toward the clinical translation of molecular imaging agents. DOTA is one of the most widely used macrocyclic ligands for the development of new metal-based imaging and therapeutic agents owing to its ability to form stable and inert complexes under physiological conditions. Although solid-phase synthesis compatible DOTA-tris-(t-Bu ester) is a commercial product, it is expensive and contain chemical impurities. There is a need to explore new and cost-effective methods for the preparation of metal chelating agents, i.e., DOTA, directly on solid support to facilitate rapid, cost-effective, and high purity preparation of DOTA-linked peptides for imaging and therapy. In the present study, we describe a facile synthetic strategy of DOTA preparation and its linkage to peptides directly on solid-phase support.

Methods

Bombesin (BN) peptides were functionalized with DOTA chelator prepared from cyclen precursor on solid-phase and from commercial DOTA-tris and radiolabeled with 68Ga. In vitro BN/GRP receptor binding affinities of the corresponding radiolabeled peptides were determined by saturation binding assays on human breast MDA-MB-231, MCF7, T47D, and PC3 prostate cancer cells. Pharmacokinetics were studied in Balb/c mice and in vivo tumor targeting in MDA-MB-231 tumor-bearing nude mice.

Results

DOTA was prepared successfully from cyclen on solid-phase support, linked specifically to BN peptides and resultant DOTA-coupled peptides were radiolabeled efficiently with 68Ga. The binding affinities of all the six BN peptides were comparable and in the low nanomolar range. All 68Ga-labeled peptides showed high metabolic stability in plasma. These radiopeptides exhibited rapid pharmacokinetics in Balb/c mice with excretion mainly through the urinary system. In nude mice, MDA-MB-231 tumor uptake profiles were slightly different; the BN peptide with Ahx spacer and linked to DOTA through cyclen exhibited higher tumor uptake (2.32% ID/g at 1 h post-injection) than other radiolabeled BN peptides investigated in this study. The same leading BN peptide also displayed favorable pharmacokinetic profile in Balb/c mice. The PET images clearly visualized the MDA-MB-231 tumor.

Conclusions

DOTA prepared from cyclen on solid-phase support showed comparable potency and efficiency to DOTA-tris in both in vitro and in vivo evaluation. The synthetic methodology described here allows versatile, site-specific introduction of DOTA into peptides to facilitate the development of DOTA-linked molecular imaging and therapy agents for clinical translation.
Literature
1.
go back to reference Hussain T, Nguyen QT. Molecular Imaging for Cancer Diagnosis and Surgery. Adv Drug Deliv Rev. 2014;66:90–100 2010.CrossRef Hussain T, Nguyen QT. Molecular Imaging for Cancer Diagnosis and Surgery. Adv Drug Deliv Rev. 2014;66:90–100 2010.CrossRef
2.
go back to reference Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481–501.CrossRef Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481–501.CrossRef
3.
go back to reference Jamous M, Haberkorn U, Mier W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules. 2013;18:3379–409.CrossRef Jamous M, Haberkorn U, Mier W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules. 2013;18:3379–409.CrossRef
4.
go back to reference Chappell LL, Rogers BE, Khazaeli MB, Mayo MS, Buchsbaum DJ, Brechbiel MW. Improved synthesis of the bifunctional chelating agent 1,4,7,10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N′,N′′,N′′′-tris(acetic acid)cyclododecane (PA-DOTA). Bioorg Med Chem. 1999;7:2313–20.CrossRef Chappell LL, Rogers BE, Khazaeli MB, Mayo MS, Buchsbaum DJ, Brechbiel MW. Improved synthesis of the bifunctional chelating agent 1,4,7,10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N′,N′′,N′′′-tris(acetic acid)cyclododecane (PA-DOTA). Bioorg Med Chem. 1999;7:2313–20.CrossRef
5.
go back to reference Cakic N, Gündüz S, Rengarasu R, Angelovski G. Synthetic strategies for preparation of cyclen-based MRI contrast agents. Tetrahedron Letters. 2015;56:759–65.CrossRef Cakic N, Gündüz S, Rengarasu R, Angelovski G. Synthetic strategies for preparation of cyclen-based MRI contrast agents. Tetrahedron Letters. 2015;56:759–65.CrossRef
6.
go back to reference De León-Rodríguez LM, Kovacs Z. The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjugate Chem. 2008;19:391–402.CrossRef De León-Rodríguez LM, Kovacs Z. The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjugate Chem. 2008;19:391–402.CrossRef
7.
go back to reference Barge A, Tei L, Upadhyaya D, Fedeli F, Beltrami L, Stefania R, Aime S, Cravotto G. Bifunctional ligands based on the DOTA-monoamide cage. Org Biomol Chem. 2008;6:1176–84.CrossRef Barge A, Tei L, Upadhyaya D, Fedeli F, Beltrami L, Stefania R, Aime S, Cravotto G. Bifunctional ligands based on the DOTA-monoamide cage. Org Biomol Chem. 2008;6:1176–84.CrossRef
8.
go back to reference Axelsson O, Olsson A. Synthesis of cyclen derivatives. United States Patent Application Publication; US 2009/0216011 A1; 2009. Axelsson O, Olsson A. Synthesis of cyclen derivatives. United States Patent Application Publication; US 2009/0216011 A1; 2009.
9.
go back to reference Peterson JJ, Pak RH, Meares CF. Total solid-phase synthesis of 1,4,7,10-tetraazacyclododecane- N,N′,N′′,N′′′-tetraacetic acid-functionalized peptides for radioimmunotherapy. Bioconjugate Chem. 1999;10:316–20.CrossRef Peterson JJ, Pak RH, Meares CF. Total solid-phase synthesis of 1,4,7,10-tetraazacyclododecane- N,N′,N′′,N′′′-tetraacetic acid-functionalized peptides for radioimmunotherapy. Bioconjugate Chem. 1999;10:316–20.CrossRef
10.
go back to reference Guerin B, Ait-Mohand S, Tremblay M-C, Dumulon-Perreault V, Fournier P, Benard F. Total solid-phase synthesis of NOTA-functionalized peptides for PET imaging. Org Lett. 2010;12:280–3.CrossRef Guerin B, Ait-Mohand S, Tremblay M-C, Dumulon-Perreault V, Fournier P, Benard F. Total solid-phase synthesis of NOTA-functionalized peptides for PET imaging. Org Lett. 2010;12:280–3.CrossRef
11.
go back to reference Burkoth TS, Fafarman AT, Charych DH, Connolly MD, Zuckermann RN. Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solid-phase submonomer synthesis. J Am Chem Soc. 2003;125:8841–5.CrossRef Burkoth TS, Fafarman AT, Charych DH, Connolly MD, Zuckermann RN. Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solid-phase submonomer synthesis. J Am Chem Soc. 2003;125:8841–5.CrossRef
12.
go back to reference Boldrini V, Giovenzana GB, Pagliarin R, Palmisano G, Sisti M. Expeditious N-monoalkylation of 1,4,7,10-tetraazacyclododecane (cyclen) via formamido protection. Tetrahedron Lett. 2000;41:6527–30.CrossRef Boldrini V, Giovenzana GB, Pagliarin R, Palmisano G, Sisti M. Expeditious N-monoalkylation of 1,4,7,10-tetraazacyclododecane (cyclen) via formamido protection. Tetrahedron Lett. 2000;41:6527–30.CrossRef
13.
go back to reference Zuckermann RN, Kerr JM, Kent SBH, Moos WH. Efficient method for the preparation of peptoids [Oligo(N-substituted glycines)] by Submonomer Solid-Phase Synthesis. J Am Chem Soc. 1992;114:10646–7.CrossRef Zuckermann RN, Kerr JM, Kent SBH, Moos WH. Efficient method for the preparation of peptoids [Oligo(N-substituted glycines)] by Submonomer Solid-Phase Synthesis. J Am Chem Soc. 1992;114:10646–7.CrossRef
14.
go back to reference Antonella Accardo A, Galli F, Mansi R, Del Pozzo L, Aurilio M, Morisco A, Ringhieri P, Signore A, Morelli G, Aloj L. Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors. EJNMMI Res. 2016;6:17.CrossRef Antonella Accardo A, Galli F, Mansi R, Del Pozzo L, Aurilio M, Morisco A, Ringhieri P, Signore A, Morelli G, Aloj L. Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors. EJNMMI Res. 2016;6:17.CrossRef
15.
go back to reference Okarvi SM, Jammaz I. Preparation and evaluation of bombesin peptide derivatives as potential tumor imaging agents: effects of structure and composition of amino acid sequence on in vitro and in vivo characteristics. Nucl Med Biol. 2012;39:795–804.CrossRef Okarvi SM, Jammaz I. Preparation and evaluation of bombesin peptide derivatives as potential tumor imaging agents: effects of structure and composition of amino acid sequence on in vitro and in vivo characteristics. Nucl Med Biol. 2012;39:795–804.CrossRef
16.
go back to reference Robey FA. Bromoacetylated synthetic peptides. In: Pennington MW, Dunn BM, editors. Peptide synthesis protocols. Methods in Molecular Biology, vol 35. Totowa: Humana Press. Robey FA. Bromoacetylated synthetic peptides. In: Pennington MW, Dunn BM, editors. Peptide synthesis protocols. Methods in Molecular Biology, vol 35. Totowa: Humana Press.
17.
go back to reference Zuckermann RN, Martin EJ, Spellmeyer DC, Stauber GB, Shoemaker KR, Kerr JM, Figliozzi GM, Goff DA, Siani MA, Simon RJ, Banville SC, Brown EG, Wang L, Richter LS, Moos WH. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(Substituted)glycine Peptoid Library. J Med Chem. 1994;37:2678–85.CrossRef Zuckermann RN, Martin EJ, Spellmeyer DC, Stauber GB, Shoemaker KR, Kerr JM, Figliozzi GM, Goff DA, Siani MA, Simon RJ, Banville SC, Brown EG, Wang L, Richter LS, Moos WH. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(Substituted)glycine Peptoid Library. J Med Chem. 1994;37:2678–85.CrossRef
18.
go back to reference Nakao R, Furutsuka K, Yamaguchi M, Suzuki K. Sensitive determination of specific radioactivity of positron emission tomography radiopharmaceuticals by radio high-performance liquid chromatography with fluorescence detection. Nucl Med Biol. 2008;35:733–40.CrossRef Nakao R, Furutsuka K, Yamaguchi M, Suzuki K. Sensitive determination of specific radioactivity of positron emission tomography radiopharmaceuticals by radio high-performance liquid chromatography with fluorescence detection. Nucl Med Biol. 2008;35:733–40.CrossRef
19.
go back to reference Okarvi SM, Jammaz I. Synthesis and evaluation of a technetium-99m labeled cytotoxic bombesin peptide conjugate for targeting bombesin receptor-expressing tumors. Nucl Med Biol. 2010;37:277–88.CrossRef Okarvi SM, Jammaz I. Synthesis and evaluation of a technetium-99m labeled cytotoxic bombesin peptide conjugate for targeting bombesin receptor-expressing tumors. Nucl Med Biol. 2010;37:277–88.CrossRef
20.
go back to reference Guide for the care and use of laboratory animals. Washington, D.C.: National Academy Press; 1996. Guide for the care and use of laboratory animals. Washington, D.C.: National Academy Press; 1996.
21.
go back to reference Eisenwiener K-P, Powell P, Macke HR. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett. 2000;10:2133–5.CrossRef Eisenwiener K-P, Powell P, Macke HR. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett. 2000;10:2133–5.CrossRef
22.
go back to reference Giacchetti S, Gauvillé C, De Crémoux P, Bertin L, Berthon P, Abita JP, et al. Characterization, in some human breast cancer cell lines, of gastrin-releasing peptide-like receptors which are absent in normal breast epithelial cells. Int J Cancer. 1990;46:293–8.CrossRef Giacchetti S, Gauvillé C, De Crémoux P, Bertin L, Berthon P, Abita JP, et al. Characterization, in some human breast cancer cell lines, of gastrin-releasing peptide-like receptors which are absent in normal breast epithelial cells. Int J Cancer. 1990;46:293–8.CrossRef
23.
go back to reference Reile H, Armatis PE, Schally AV. Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145: internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells. Prostate. 1994;25:29–38.CrossRef Reile H, Armatis PE, Schally AV. Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145: internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells. Prostate. 1994;25:29–38.CrossRef
24.
go back to reference Jensen RT, Battey JF, Spindel ER, Benya RV. International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008;60:1–42.CrossRef Jensen RT, Battey JF, Spindel ER, Benya RV. International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008;60:1–42.CrossRef
Metadata
Title
A convenient and efficient total solid-phase synthesis of DOTA-functionalized tumor-targeting peptides for PET imaging of cancer
Authors
Subhani M. Okarvi
Ibrahim AlJammaz
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0539-0

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue