Skip to main content
Top
Published in: Molecular Autism 1/2015

Open Access 01-12-2015 | Research

A comprehensive meta-analysis of common genetic variants in autism spectrum conditions

Authors: Varun Warrier, Vivienne Chee, Paula Smith, Bhismadev Chakrabarti, Simon Baron-Cohen

Published in: Molecular Autism | Issue 1/2015

Login to get access

Abstract

Background

Autism spectrum conditions (ASC) are a group of neurodevelopmental conditions characterized by difficulties in social interaction and communication alongside repetitive and stereotyped behaviours. ASC are heritable, and common genetic variants contribute substantial phenotypic variability. More than 600 genes have been implicated in ASC to date. However, a comprehensive investigation of candidate gene association studies in ASC is lacking.

Methods

In this study, we systematically reviewed the literature for association studies for 552 genes associated with ASC. We identified 58 common genetic variants in 27 genes that have been investigated in three or more independent cohorts and conducted a meta-analysis for 55 of these variants. We investigated publication bias and sensitivity and performed stratified analyses for a subset of these variants.

Results

We identified 15 variants nominally significant for the mean effect size, 8 of which had P values below a threshold of significance of 0.01. Of these 15 variants, 11 were re-investigated for effect sizes and significance in the larger Psychiatric Genomics Consortium dataset, and none of them were significant. Effect direction for 8 of the 11 variants were concordant between both the datasets, although the correlation between the effect sizes from the two datasets was poor and non-significant.

Conclusions

This is the first study to comprehensively examine common variants in candidate genes for ASC through meta-analysis. While for majority of the variants, the total sample size was above 500 cases and 500 controls, the total sample size was not large enough to accurately identify common variants that contribute to the aetiology of ASC.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. 4th ed. Washington, DC: American Psychiatric Association; 1994. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. 4th ed. Washington, DC: American Psychiatric Association; 1994.
3.
go back to reference Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.PubMedCentralCrossRefPubMed Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.PubMedCentralCrossRefPubMed
4.
go back to reference Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism. 2012;3:9.PubMedCentralCrossRefPubMed Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism. 2012;3:9.PubMedCentralCrossRefPubMed
6.
go back to reference O’Roak BJ, State MW. Autism genetics: strategies, challenges, and opportunities. Autism Res. 2008;1:4–17.CrossRefPubMed O’Roak BJ, State MW. Autism genetics: strategies, challenges, and opportunities. Autism Res. 2008;1:4–17.CrossRefPubMed
7.
go back to reference Borenstein M, Hedges LV, Higgins J, Rothstein H. Introduction to meta-analysis. Chichester: Wiley; 2009.CrossRef Borenstein M, Hedges LV, Higgins J, Rothstein H. Introduction to meta-analysis. Chichester: Wiley; 2009.CrossRef
8.
go back to reference Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7:405–11.CrossRefPubMed Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7:405–11.CrossRefPubMed
9.
go back to reference Munafò MR, Clark TG, Moore LR, Payne E, Walton R, Flint J. Genetic polymorphisms and personality in healthy adults: a systematic review and meta-analysis. Mol Psychiatry. 2003;8:471–84.CrossRefPubMed Munafò MR, Clark TG, Moore LR, Payne E, Walton R, Flint J. Genetic polymorphisms and personality in healthy adults: a systematic review and meta-analysis. Mol Psychiatry. 2003;8:471–84.CrossRefPubMed
10.
go back to reference Taylor S. Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol Psychiatry. 2013;18:799–805.CrossRefPubMed Taylor S. Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol Psychiatry. 2013;18:799–805.CrossRefPubMed
11.
go back to reference Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C, et al. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res. 2009;2:157–77.CrossRefPubMed Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C, et al. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res. 2009;2:157–77.CrossRefPubMed
12.
go back to reference Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism. 2013;4:48.PubMedCentralCrossRefPubMed Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism. 2013;4:48.PubMedCentralCrossRefPubMed
13.
go back to reference Borenstein M, Hedges LV, Higgins J, Rothstein H. Comprehensive Meta-Analysis, 2.2050 edn. Englewood, NJ: Biostat; 2009. Borenstein M, Hedges LV, Higgins J, Rothstein H. Comprehensive Meta-Analysis, 2.2050 edn. Englewood, NJ: Biostat; 2009.
14.
15.
go back to reference Cross Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.PubMedCentralCrossRef Cross Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.PubMedCentralCrossRef
16.
go back to reference LoParo D, Waldman ID. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry. 2014 [Epub ahead of print]. LoParo D, Waldman ID. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry. 2014 [Epub ahead of print].
17.
go back to reference Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, et al. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:192–200.CrossRefPubMed Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, et al. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:192–200.CrossRefPubMed
18.
go back to reference Huang CH, Santangelo SL. Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:903–13.CrossRefPubMed Huang CH, Santangelo SL. Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:903–13.CrossRefPubMed
19.
go back to reference Song RR, Zou L, Zhong R, Zheng XW, Zhu BB, Chen W, et al. An integrated meta-analysis of two variants in HOXA1/HOXB1 and their effect on the risk of autism spectrum disorders. PLoS ONE. 2011;6:e25603.PubMedCentralCrossRefPubMed Song RR, Zou L, Zhong R, Zheng XW, Zhu BB, Chen W, et al. An integrated meta-analysis of two variants in HOXA1/HOXB1 and their effect on the risk of autism spectrum disorders. PLoS ONE. 2011;6:e25603.PubMedCentralCrossRefPubMed
20.
go back to reference Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013;6:384–92.CrossRefPubMed Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013;6:384–92.CrossRefPubMed
21.
go back to reference Park J, Ro M, Pyun JA, Nam M, Bang HJ, Yang JW, et al. MTHFR 1298A>C is a risk factor for autism spectrum disorder in the Korean population. Psychiatry Res. 2014;215:258–9.CrossRefPubMed Park J, Ro M, Pyun JA, Nam M, Bang HJ, Yang JW, et al. MTHFR 1298A>C is a risk factor for autism spectrum disorder in the Korean population. Psychiatry Res. 2014;215:258–9.CrossRefPubMed
22.
go back to reference Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011;22:476–85.PubMedCentralCrossRefPubMed Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011;22:476–85.PubMedCentralCrossRefPubMed
23.
go back to reference Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, et al. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry. 2004;161:662–9.CrossRefPubMed Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, et al. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry. 2004;161:662–9.CrossRefPubMed
24.
go back to reference Chaste P, Klei L, Sanders SJ, Hus V, Murtha MT, Lowe JK, et al. A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry. 2015;77:775–84.CrossRefPubMed Chaste P, Klei L, Sanders SJ, Hus V, Murtha MT, Lowe JK, et al. A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry. 2015;77:775–84.CrossRefPubMed
25.
go back to reference Liu XQ, Paterson AD, Szatmari P, Autism Genome Project Consortium. Genome-wide linkage analyses of quantitative and categorical autism subphenotypes. Biol Psychiatry. 2008;64:561–70.PubMedCentralCrossRefPubMed Liu XQ, Paterson AD, Szatmari P, Autism Genome Project Consortium. Genome-wide linkage analyses of quantitative and categorical autism subphenotypes. Biol Psychiatry. 2008;64:561–70.PubMedCentralCrossRefPubMed
26.
go back to reference Liu L, Lei J, Sanders SJ, Willsey AJ, Kou Y, Cicek AE, et al. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism. 2014;5:22.PubMedCentralCrossRefPubMed Liu L, Lei J, Sanders SJ, Willsey AJ, Kou Y, Cicek AE, et al. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism. 2014;5:22.PubMedCentralCrossRefPubMed
27.
go back to reference De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.PubMedCentralCrossRefPubMed De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.PubMedCentralCrossRefPubMed
28.
go back to reference Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.PubMedCentralCrossRefPubMed Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.PubMedCentralCrossRefPubMed
29.
go back to reference Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.CrossRefPubMed Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.CrossRefPubMed
30.
go back to reference Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.PubMedCentralCrossRefPubMed Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.PubMedCentralCrossRefPubMed
31.
go back to reference Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.PubMedCentralCrossRefPubMed Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.PubMedCentralCrossRefPubMed
Metadata
Title
A comprehensive meta-analysis of common genetic variants in autism spectrum conditions
Authors
Varun Warrier
Vivienne Chee
Paula Smith
Bhismadev Chakrabarti
Simon Baron-Cohen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2015
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0041-0

Other articles of this Issue 1/2015

Molecular Autism 1/2015 Go to the issue