Skip to main content
Top
Published in: Radiation Oncology 1/2011

Open Access 01-12-2011 | Research

A comparison of dose-response characteristics of four NTCP models using outcomes of radiation-induced optic neuropathy and retinopathy

Authors: Vitali Moiseenko, William Y Song, Loren K Mell, Niranjan Bhandare

Published in: Radiation Oncology | Issue 1/2011

Login to get access

Abstract

Background

Biological models are used to relate the outcome of radiation therapy to dose distribution. As use of biological models in treatment planning expands, uncertainties associated with the use of specific models for predicting outcomes should be understood and quantified. In particular, the question to what extent model predictions are data-driven or dependent on the choice of the model has to be explored.

Methods

Four dose-response models--logistic, log-logistic, Poisson-based and probit--were tested for their ability and consistency in describing dose-response data for radiation-induced optic neuropathy (RION) and retinopathy (RIRP). Dose to the optic nerves was specified as the minimum dose, D min , received by any segment of the organ to which the damage was diagnosed by ophthalmologic evaluation. For retinopathy, the dose to the retina was specified as the highest isodose covering at least 1/3 of the retinal surface (D 33% ) that geometrically covered the observed retinal damage. Data on both complications were modeled separately for patients treated once daily and twice daily. Model parameters D 50 and γ and corresponding confidence intervals were obtained using maximum-likelihood method.

Results

Model parameters were reasonably consistent for RION data for patients treated once daily, D 50 ranging from 94.2 to 104.7 Gy and γ from 0.88 to 1.41. Similar consistency was seen for RIRP data which span a broad range of complication incidence, with D 50 from 72.2 to 75.0 Gy and γ from 1.51 to 2.16 for patients treated twice daily; 72.2-74.0 Gy and 0.84-1.20 for patients treated once daily. However, large variations were observed for RION in patients treated twice daily, D50 from 96.3 to 125.2 Gy and γ from 0.80 to 1.56. Complication incidence in this dataset in any dose group did not exceed 20%.

Conclusions

For the considered data sets, the log-logistic model tends to lead to larger D 50 and lower γ compared to other models for all datasets. Statements regarding normal tissue radiosensitivity and steepness of dose-response, based on model parameters, should be made with caution as the latter are not only model-dependent but also sensitive to the range of complication incidence exhibited by clinical data.
Appendix
Available only for authorised users
Literature
1.
go back to reference Niemierko A, Urie M, Goitein M: Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 1992, 23: 99-108. 10.1016/0360-3016(92)90548-VCrossRefPubMed Niemierko A, Urie M, Goitein M: Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 1992, 23: 99-108. 10.1016/0360-3016(92)90548-VCrossRefPubMed
2.
go back to reference Sodertrom S, Brahme A: Optimization of the dose delivery in a few field techniques using radiobiological objective functions. Med Phys 1993, 20: 1201-1210. 10.1118/1.596971CrossRefPubMed Sodertrom S, Brahme A: Optimization of the dose delivery in a few field techniques using radiobiological objective functions. Med Phys 1993, 20: 1201-1210. 10.1118/1.596971CrossRefPubMed
3.
go back to reference Alber M, Nusslin F: An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol 1999, 44: 479-493. 10.1088/0031-9155/44/2/014CrossRefPubMed Alber M, Nusslin F: An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol 1999, 44: 479-493. 10.1088/0031-9155/44/2/014CrossRefPubMed
4.
go back to reference Semenenko VA, Reitz B, Day E, Qi XS, Miften M, Li XA: Evaluation of a commercial biologically based IMRT treatment planning system. Med Phys 2008, 35: 5851-5860. 10.1118/1.3013556CrossRefPubMed Semenenko VA, Reitz B, Day E, Qi XS, Miften M, Li XA: Evaluation of a commercial biologically based IMRT treatment planning system. Med Phys 2008, 35: 5851-5860. 10.1118/1.3013556CrossRefPubMed
5.
go back to reference Yang Y, Xing L: Towards biologically conformal radiation therapy (BCRT): selective IMRT dose escalation under the guidance of spatial biology distribution. Med Phys 2005, 32: 1473-1484. 10.1118/1.1924312CrossRefPubMed Yang Y, Xing L: Towards biologically conformal radiation therapy (BCRT): selective IMRT dose escalation under the guidance of spatial biology distribution. Med Phys 2005, 32: 1473-1484. 10.1118/1.1924312CrossRefPubMed
6.
go back to reference Kim Y, Tome W: Optimization of radiotherapy using biological parameters. Cancer Treat Res 2008, 139: 257-278.PubMed Kim Y, Tome W: Optimization of radiotherapy using biological parameters. Cancer Treat Res 2008, 139: 257-278.PubMed
7.
go back to reference South CP, Partridge M, Evans PM: A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med Phys 2008, 35: 4599-4611. 10.1118/1.2975229CrossRefPubMed South CP, Partridge M, Evans PM: A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med Phys 2008, 35: 4599-4611. 10.1118/1.2975229CrossRefPubMed
8.
go back to reference Yorke ED: Modeling the effects of inhomogeneous dose distributions in normal tissues. Semin Radiat Oncol 2001, 11: 197-209. 10.1053/srao.2001.23478CrossRefPubMed Yorke ED: Modeling the effects of inhomogeneous dose distributions in normal tissues. Semin Radiat Oncol 2001, 11: 197-209. 10.1053/srao.2001.23478CrossRefPubMed
9.
go back to reference Kallman P, Agren A, Brahme A: Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 1992, 62: 249-262. 10.1080/09553009214552071CrossRefPubMed Kallman P, Agren A, Brahme A: Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 1992, 62: 249-262. 10.1080/09553009214552071CrossRefPubMed
10.
go back to reference Lyman JT, Wolbarst AB: Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 1989, 17: 433-436. 10.1016/0360-3016(89)90462-8CrossRefPubMed Lyman JT, Wolbarst AB: Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 1989, 17: 433-436. 10.1016/0360-3016(89)90462-8CrossRefPubMed
11.
go back to reference Okunieff P, Morgan D, Niemierko A, Suit HD: Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 1995, 32: 1227-1237. 10.1016/0360-3016(94)00475-ZCrossRefPubMed Okunieff P, Morgan D, Niemierko A, Suit HD: Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 1995, 32: 1227-1237. 10.1016/0360-3016(94)00475-ZCrossRefPubMed
12.
go back to reference Schultheiss TE, Orton CG, Peck RA: Models in radiotherapy: volume effects. Med Phys 1983, 10: 410-415. 10.1118/1.595312CrossRefPubMed Schultheiss TE, Orton CG, Peck RA: Models in radiotherapy: volume effects. Med Phys 1983, 10: 410-415. 10.1118/1.595312CrossRefPubMed
13.
go back to reference Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 2002, 52: 224-235. 10.1016/S0360-3016(01)02585-8CrossRefPubMed Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 2002, 52: 224-235. 10.1016/S0360-3016(01)02585-8CrossRefPubMed
14.
go back to reference Seppenwoolde Y, Lebesque JV, de Jaeger K, Belderbos JS, Boersma LJ, Schilstra C, et al.: Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol Phys 2003, 55: 724-735. 10.1016/S0360-3016(02)03986-XCrossRefPubMed Seppenwoolde Y, Lebesque JV, de Jaeger K, Belderbos JS, Boersma LJ, Schilstra C, et al.: Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol Phys 2003, 55: 724-735. 10.1016/S0360-3016(02)03986-XCrossRefPubMed
15.
go back to reference Sohn M, Yan D, Liang J, Meldolesi E, Vargas C, Alber M: Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int J Radiat Oncol Biol Phys 2007, 67: 1066-1073. 10.1016/j.ijrobp.2006.10.014CrossRefPubMed Sohn M, Yan D, Liang J, Meldolesi E, Vargas C, Alber M: Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int J Radiat Oncol Biol Phys 2007, 67: 1066-1073. 10.1016/j.ijrobp.2006.10.014CrossRefPubMed
16.
go back to reference Bentzen SM, Tucker SL: Quantifying the position and steepness of radiation dose-response curves. Int J Radiat Biol 1997, 71: 531-542. 10.1080/095530097143860CrossRefPubMed Bentzen SM, Tucker SL: Quantifying the position and steepness of radiation dose-response curves. Int J Radiat Biol 1997, 71: 531-542. 10.1080/095530097143860CrossRefPubMed
17.
go back to reference Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al.: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010, 76: S10-S19. 10.1016/j.ijrobp.2009.07.1754PubMedCentralCrossRefPubMed Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al.: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010, 76: S10-S19. 10.1016/j.ijrobp.2009.07.1754PubMedCentralCrossRefPubMed
18.
go back to reference Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A: Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 2010, 76: S58-S63. 10.1016/j.ijrobp.2009.06.090PubMedCentralCrossRefPubMed Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A: Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 2010, 76: S58-S63. 10.1016/j.ijrobp.2009.06.090PubMedCentralCrossRefPubMed
19.
go back to reference Munter MW, Karger CP, Hoffner SG, Hof H, Thilmann C, Rudat V, et al.: Evaluation of salivary gland function after treatment of head-and-neck tumors with intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. Int J Radiat Oncol Biol Phys 2004, 58: 175-184. 10.1016/S0360-3016(03)01437-8CrossRefPubMed Munter MW, Karger CP, Hoffner SG, Hof H, Thilmann C, Rudat V, et al.: Evaluation of salivary gland function after treatment of head-and-neck tumors with intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. Int J Radiat Oncol Biol Phys 2004, 58: 175-184. 10.1016/S0360-3016(03)01437-8CrossRefPubMed
20.
go back to reference Munter MW, Hoffner S, Hof H, Herfarth KK, Haberkorn U, Rudat V, et al.: Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine. Int J Radiat Oncol Biol Phys 2007, 67: 651-659. 10.1016/j.ijrobp.2006.09.035CrossRefPubMed Munter MW, Hoffner S, Hof H, Herfarth KK, Haberkorn U, Rudat V, et al.: Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine. Int J Radiat Oncol Biol Phys 2007, 67: 651-659. 10.1016/j.ijrobp.2006.09.035CrossRefPubMed
21.
go back to reference Bhandare N, Monroe AT, Morris CG, Bhatti MT, Mendenhall WM: Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys 2005, 62: 1070-1077. 10.1016/j.ijrobp.2004.12.009CrossRefPubMed Bhandare N, Monroe AT, Morris CG, Bhatti MT, Mendenhall WM: Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys 2005, 62: 1070-1077. 10.1016/j.ijrobp.2004.12.009CrossRefPubMed
22.
go back to reference Monroe AT, Bhandare N, Morris CG, Mendenhall WM: Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys 2005, 61: 856-864. 10.1016/j.ijrobp.2004.07.664CrossRefPubMed Monroe AT, Bhandare N, Morris CG, Mendenhall WM: Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys 2005, 61: 856-864. 10.1016/j.ijrobp.2004.07.664CrossRefPubMed
23.
go back to reference Bhandare N, Song W, Moiseenko V, Malyapa R, Morris CG, Mendenhall WM: Radiation-induced optic neuropothy: dose response and modeling total dose and fractionation. International Journal of Radiation Oncology Biology Physics 2008,72(1):S396. Ref Type: AbstractCrossRef Bhandare N, Song W, Moiseenko V, Malyapa R, Morris CG, Mendenhall WM: Radiation-induced optic neuropothy: dose response and modeling total dose and fractionation. International Journal of Radiation Oncology Biology Physics 2008,72(1):S396. Ref Type: AbstractCrossRef
24.
go back to reference Song W, Bhandare N, Moiseenko V: Dose Response Analysis of Radiation-Induced Retinopathy (RIRP) Single-Institution Data Using the Lyman NTCP Model. Med Phys 2008,35(6):2934. Ref Type: AbstractCrossRef Song W, Bhandare N, Moiseenko V: Dose Response Analysis of Radiation-Induced Retinopathy (RIRP) Single-Institution Data Using the Lyman NTCP Model. Med Phys 2008,35(6):2934. Ref Type: AbstractCrossRef
25.
go back to reference Thames HD, Rozell ME, Tucker SL, Ang KK, Fisher DR, Travis EL: Direct analysis of quantal radiation response data. Int J Radiat Biol Relat Stud Phys Chem Med 1986, 49: 999-1009. 10.1080/09553008514553221CrossRefPubMed Thames HD, Rozell ME, Tucker SL, Ang KK, Fisher DR, Travis EL: Direct analysis of quantal radiation response data. Int J Radiat Biol Relat Stud Phys Chem Med 1986, 49: 999-1009. 10.1080/09553008514553221CrossRefPubMed
26.
go back to reference Roberts SA, Hendry JH: The delay before onset of accelerated tumour cell repopulation during radiotherapy: a direct maximum-likelihood analysis of a collection of worldwide tumour-control data. Radiother Oncol 1993, 29: 69-74. 10.1016/0167-8140(93)90175-8CrossRefPubMed Roberts SA, Hendry JH: The delay before onset of accelerated tumour cell repopulation during radiotherapy: a direct maximum-likelihood analysis of a collection of worldwide tumour-control data. Radiother Oncol 1993, 29: 69-74. 10.1016/0167-8140(93)90175-8CrossRefPubMed
27.
go back to reference Agresti A, Coull B: Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician 1998, 52: 119-126. 10.2307/2685469 Agresti A, Coull B: Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician 1998, 52: 119-126. 10.2307/2685469
28.
go back to reference Langer M, Morrill SS, Lane R: A test of the claim that plan rankings are determined by relative complication and tumor-control probabilities. Int J Radiat Oncol Biol Phys 1998, 41: 451-457. 10.1016/S0360-3016(98)00057-1CrossRefPubMed Langer M, Morrill SS, Lane R: A test of the claim that plan rankings are determined by relative complication and tumor-control probabilities. Int J Radiat Oncol Biol Phys 1998, 41: 451-457. 10.1016/S0360-3016(98)00057-1CrossRefPubMed
29.
go back to reference Zaider M, Amols HI: A little to a lot or a lot to a little: is NTCP always minimized in multiport therapy? Int J Radiat Oncol Biol Phys 1998, 41: 945-950. 10.1016/S0360-3016(98)00128-XCrossRefPubMed Zaider M, Amols HI: A little to a lot or a lot to a little: is NTCP always minimized in multiport therapy? Int J Radiat Oncol Biol Phys 1998, 41: 945-950. 10.1016/S0360-3016(98)00128-XCrossRefPubMed
30.
go back to reference Moiseenko V, Battista J, van Dyk J: Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme. Int J Radiat Oncol Biol Phys 2000, 46: 983-993. 10.1016/S0360-3016(99)00473-3CrossRefPubMed Moiseenko V, Battista J, van Dyk J: Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme. Int J Radiat Oncol Biol Phys 2000, 46: 983-993. 10.1016/S0360-3016(99)00473-3CrossRefPubMed
31.
go back to reference Claus F, De Gersem W, Vanhoutte I, Duthoy W, Remouchamps V, De Wagter C, et al.: Evaluation of a leaf position optimization tool for intensity modulated radiation therapy of head and neck cancer. Radiother Oncol 2001, 61: 281-286. 10.1016/S0167-8140(01)00441-8CrossRefPubMed Claus F, De Gersem W, Vanhoutte I, Duthoy W, Remouchamps V, De Wagter C, et al.: Evaluation of a leaf position optimization tool for intensity modulated radiation therapy of head and neck cancer. Radiother Oncol 2001, 61: 281-286. 10.1016/S0167-8140(01)00441-8CrossRefPubMed
32.
go back to reference Wigg DR: Applied Radiobiology and Bioeffect Planning. 1st edition. Madison, Wisconsin: Medical Physics Publishing; 2001. Wigg DR: Applied Radiobiology and Bioeffect Planning. 1st edition. Madison, Wisconsin: Medical Physics Publishing; 2001.
33.
go back to reference Witte MG, van der GJ, Schneider C, Lebesque JV, Alber M, van Herk M: IMRT optimization including random and systematic geometric errors based on the expectation of TCP and NTCP. Med Phys 2007, 34: 3544-3555. 10.1118/1.2760027CrossRefPubMed Witte MG, van der GJ, Schneider C, Lebesque JV, Alber M, van Herk M: IMRT optimization including random and systematic geometric errors based on the expectation of TCP and NTCP. Med Phys 2007, 34: 3544-3555. 10.1118/1.2760027CrossRefPubMed
34.
go back to reference Kutcher GJ, Burman C: Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 1989, 16: 1623-1630. 10.1016/0360-3016(89)90972-3CrossRefPubMed Kutcher GJ, Burman C: Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 1989, 16: 1623-1630. 10.1016/0360-3016(89)90972-3CrossRefPubMed
35.
go back to reference Dawson LA, Eccles C, Craig T: Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol 2006, 45: 856-864. 10.1080/02841860600936369CrossRefPubMed Dawson LA, Eccles C, Craig T: Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol 2006, 45: 856-864. 10.1080/02841860600936369CrossRefPubMed
Metadata
Title
A comparison of dose-response characteristics of four NTCP models using outcomes of radiation-induced optic neuropathy and retinopathy
Authors
Vitali Moiseenko
William Y Song
Loren K Mell
Niranjan Bhandare
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2011
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-6-61

Other articles of this Issue 1/2011

Radiation Oncology 1/2011 Go to the issue