Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Research

A combined analysis of multi-omics data reveals the prognostic values and immunotherapy response of LAG3 in human cancers

Authors: Jinwu Peng, Zhihao Du, Yuwei Sun, Zhiyang Zhou

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Lymphocyte-activation gene 3 (LAG3) is a highly anticipated immune checkpoint in the context of cancer, exerting regulatory control over immune cell proliferation and function to reinforce the advancement of cancers. However, the comprehensive functional analysis of LAG3 across various cancer types remains undisclosed; thus, this study aims to investigate the pan-cancer expression profile of LAG3. We have investigated the expression profile, prognostic significance, and genetic alterations of LAG3 in various cancers while elucidating its characteristic in immune response regulation. Our findings demonstrated that elevated LAG3 expression is significantly associated with favorable prognosis in patients with cutaneous melanoma (SKCM), and it may be a potential biomarker for SKCM. Furthermore, multiple immune algorithms have highlighted the important regulatory role of LAG3 for the tumor-infiltrating immune cells including CD8 + T cells, B cells, dendritic cells (DCs), macrophages, and natural killer (NK) cells. We also examined the distribution of LAG3 at the single-cell level and explored its functional significance. A comprehensive and systematic analysis of LAG3 would facilitate a comprehensive evaluation of LAG3 in cancer biology and provide valuable insights for cancer management.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li Y, Lin Y, Aye L, Dong L, Zhang C, Chen F, Liu Y, Fan J, Gao Q, Lu H, et al. An integrative pan-cancer analysis of the molecular and biological features of glycosyltransferases. Clin Transl Med. 2022;12(7): e872.CrossRefPubMedPubMedCentral Li Y, Lin Y, Aye L, Dong L, Zhang C, Chen F, Liu Y, Fan J, Gao Q, Lu H, et al. An integrative pan-cancer analysis of the molecular and biological features of glycosyltransferases. Clin Transl Med. 2022;12(7): e872.CrossRefPubMedPubMedCentral
2.
go back to reference Ren L, Yi J, Yang Y, Li W, Zheng X, Liu J, Li S, Yang H, Zhang Y, Ge B, et al. Systematic pan-cancer analysis identifies APOC1 as an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis. Pharmacol Res. 2022;183: 106376.CrossRefPubMed Ren L, Yi J, Yang Y, Li W, Zheng X, Liu J, Li S, Yang H, Zhang Y, Ge B, et al. Systematic pan-cancer analysis identifies APOC1 as an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis. Pharmacol Res. 2022;183: 106376.CrossRefPubMed
4.
go back to reference Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, Chen D, Wasley M, Silva JD, Mitchell JA, et al. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant lung cancer. J Nanobiotechnology. 2022;20(1):417.CrossRefPubMedPubMedCentral Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, Chen D, Wasley M, Silva JD, Mitchell JA, et al. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant lung cancer. J Nanobiotechnology. 2022;20(1):417.CrossRefPubMedPubMedCentral
6.
go back to reference Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(17):7875–80.CrossRefPubMedPubMedCentral Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(17):7875–80.CrossRefPubMedPubMedCentral
7.
go back to reference Liu Q, Qi Y, Zhai J, Kong X, Wang X, Wang Z, Fang Y, Wang J. Molecular and clinical characterization of LAG3 in breast cancer through 2994 samples. Front Immunol. 2021;12: 599207.CrossRefPubMedPubMedCentral Liu Q, Qi Y, Zhai J, Kong X, Wang X, Wang Z, Fang Y, Wang J. Molecular and clinical characterization of LAG3 in breast cancer through 2994 samples. Front Immunol. 2021;12: 599207.CrossRefPubMedPubMedCentral
8.
go back to reference Ulase D, Behrens HM, Kruger S, Heckl SM, Ebert U, Becker T, Rocken C. LAG3 in gastric cancer: it’s complicated. J Cancer Res Clin Oncol. 2023;149(12):10797–811.CrossRefPubMedPubMedCentral Ulase D, Behrens HM, Kruger S, Heckl SM, Ebert U, Becker T, Rocken C. LAG3 in gastric cancer: it’s complicated. J Cancer Res Clin Oncol. 2023;149(12):10797–811.CrossRefPubMedPubMedCentral
9.
go back to reference Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34.CrossRefPubMedPubMedCentral Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34.CrossRefPubMedPubMedCentral
10.
go back to reference Shao D, Chen Y, Huang H, Liu Y, Chen J, Zhu D, Zheng X, Chen L, Jiang J. LAG3 blockade coordinates with microwave ablation to promote CD8(+) T cell-mediated anti-tumor immunity. J Transl Med. 2022;20(1):433.CrossRefPubMedPubMedCentral Shao D, Chen Y, Huang H, Liu Y, Chen J, Zhu D, Zheng X, Chen L, Jiang J. LAG3 blockade coordinates with microwave ablation to promote CD8(+) T cell-mediated anti-tumor immunity. J Transl Med. 2022;20(1):433.CrossRefPubMedPubMedCentral
11.
go back to reference Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, Hou P, Ruiz SH, Soto LS, Parra E, Ying H, et al. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. Nat Cancer. 2023;4(1):62–80.PubMed Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, Hou P, Ruiz SH, Soto LS, Parra E, Ying H, et al. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. Nat Cancer. 2023;4(1):62–80.PubMed
12.
go back to reference Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14.CrossRefPubMedPubMedCentral Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14.CrossRefPubMedPubMedCentral
13.
go back to reference Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.CrossRefPubMedPubMedCentral Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.CrossRefPubMedPubMedCentral
14.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed
15.
go back to reference Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-d612.CrossRefPubMed Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-d612.CrossRefPubMed
16.
go back to reference Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, Xu L, Luo T, Yan H, Long Z, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900–8.CrossRefPubMed Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, Xu L, Luo T, Yan H, Long Z, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900–8.CrossRefPubMed
17.
go back to reference Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, Wang H, Li T, Wang C. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425–31.CrossRefPubMed Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, Wang H, Li T, Wang C. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425–31.CrossRefPubMed
18.
go back to reference Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19(1):37–50.CrossRefPubMed Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19(1):37–50.CrossRefPubMed
19.
go back to reference MacLachlan BJ, Mason GH, Greenshields-Watson A, Triebel F, Gallimore A, Cole DK, Godkin A. Molecular characterization of HLA class II binding to the LAG-3 T cell co-inhibitory receptor. Eur J Immunol. 2021;51(2):331–41.CrossRefPubMed MacLachlan BJ, Mason GH, Greenshields-Watson A, Triebel F, Gallimore A, Cole DK, Godkin A. Molecular characterization of HLA class II binding to the LAG-3 T cell co-inhibitory receptor. Eur J Immunol. 2021;51(2):331–41.CrossRefPubMed
21.
go back to reference Huard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994;24(12):3216–21.CrossRefPubMed Huard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994;24(12):3216–21.CrossRefPubMed
22.
go back to reference Somasundaram A, Cillo AR, Lampenfeld C, Workman CJ, Kunning S, Oliveri L, Velez M, Joyce S, Calderon M, Dadey R, et al. Systemic immune dysfunction in cancer patients driven by IL6 induction of LAG3 in peripheral CD8+ T cells. Cancer Immunol Res. 2022;10(7):885–99.CrossRefPubMedPubMedCentral Somasundaram A, Cillo AR, Lampenfeld C, Workman CJ, Kunning S, Oliveri L, Velez M, Joyce S, Calderon M, Dadey R, et al. Systemic immune dysfunction in cancer patients driven by IL6 induction of LAG3 in peripheral CD8+ T cells. Cancer Immunol Res. 2022;10(7):885–99.CrossRefPubMedPubMedCentral
23.
go back to reference Tu L, Guan R, Yang H, Zhou Y, Hong W, Ma L, Zhao G, Yu M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int J Cancer. 2020;147(2):423–39.CrossRefPubMed Tu L, Guan R, Yang H, Zhou Y, Hong W, Ma L, Zhao G, Yu M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int J Cancer. 2020;147(2):423–39.CrossRefPubMed
24.
go back to reference Xia ZA, Lu C, Pan C, Li J, Li J, Mao Y, Sun L, He J. The expression profiles of signature genes from CD103(+)LAG3(+) tumour-infiltrating lymphocyte subsets predict breast cancer survival. BMC Med. 2023;21(1):268.CrossRefPubMedPubMedCentral Xia ZA, Lu C, Pan C, Li J, Li J, Mao Y, Sun L, He J. The expression profiles of signature genes from CD103(+)LAG3(+) tumour-infiltrating lymphocyte subsets predict breast cancer survival. BMC Med. 2023;21(1):268.CrossRefPubMedPubMedCentral
25.
go back to reference Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392–5.CrossRefPubMed Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392–5.CrossRefPubMed
26.
go back to reference Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernandez-Rubio L, Morente P, Fernandez-Hinojal G, Echaide M, Garnica M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22(10):5282.CrossRefPubMedPubMedCentral Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernandez-Rubio L, Morente P, Fernandez-Hinojal G, Echaide M, Garnica M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22(10):5282.CrossRefPubMedPubMedCentral
Metadata
Title
A combined analysis of multi-omics data reveals the prognostic values and immunotherapy response of LAG3 in human cancers
Authors
Jinwu Peng
Zhihao Du
Yuwei Sun
Zhiyang Zhou
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01583-9

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue