Skip to main content
Top
Published in: Targeted Oncology 4/2015

01-12-2015 | Original Research

A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines

Authors: Yi Shi, Lin Sun, Ge Chen, Dongyan Zheng, Li Li, Wanguo Wei

Published in: Targeted Oncology | Issue 4/2015

Login to get access

Abstract

Breast cancer is one of the most significant causes of female cancer death worldwide. Paclitaxel, an extensively used breast cancer chemotherapeutic has limited success due to drug resistance. 2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532), a small molecule pharmacological inhibitor of telomerase activity, can inhibit human cancer cell proliferation as well. Thus, to enhance breast cancer treatment efficacy, we studied the combination of BIBR1532 and paclitaxel in breast cancer cell lines. Cell viability assays revealed that BIBR1532 or paclitaxel alone inhibited proliferation in a dose-dependent manner, and combining the drugs synergistically induced growth inhibition in all breast cell lines tested independent of their p53, ER, and HER2 status. The drug combination also synergistically inhibited colony formation of MCF-7 cells in a dose-dependent manner. Annexin V-PI staining and Western blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that BIBR1532 in combination with paclitaxel was more potent than either agent alone in promoting MCF-7 cell apoptosis. Cell cycle analysis indicated that BIBR1532 induced a G1 phase arrest and paclitaxel arrested cells at the G2/M phase. The drug combination dramatically blocked S cells from entering the G2/M phase. Our results suggest the potential of telomerase inhibition as an effective breast cancer treatment and that used in conjunction with paclitaxel; it may potentiate tumor cytotoxicity.
Literature
1.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMed
2.
go back to reference Yang L, Parkin DM, Whelan S et al (2005) Statistics on cancer in China: cancer registration in 2002. Eur J Cancer Prev 14:329–335CrossRefPubMed Yang L, Parkin DM, Whelan S et al (2005) Statistics on cancer in China: cancer registration in 2002. Eur J Cancer Prev 14:329–335CrossRefPubMed
3.
go back to reference Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology Basel 77:400–410CrossRef Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology Basel 77:400–410CrossRef
4.
go back to reference Ciardiello F, Troiani T, Caputo F et al (2006) Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br J Cancer 94:1604–1609PubMedPubMedCentral Ciardiello F, Troiani T, Caputo F et al (2006) Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br J Cancer 94:1604–1609PubMedPubMedCentral
5.
go back to reference Dapic V, Carvalho MA, Monteiro AN (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control 12:127–136PubMed Dapic V, Carvalho MA, Monteiro AN (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control 12:127–136PubMed
6.
go back to reference Berry J (2005) Are all aromatase inhibitors the same? A review of controlled clinical trials in breast cancer. Clin Ther 27:1671–1684CrossRefPubMed Berry J (2005) Are all aromatase inhibitors the same? A review of controlled clinical trials in breast cancer. Clin Ther 27:1671–1684CrossRefPubMed
7.
go back to reference Nicholson BP, Paul DM, Hande KR et al (2000) Paclitaxel, 5-fluorouracil, and leucovorin (TFL) in the treatment of metastatic breast cancer. Clin Breast Cancer 1(136–143):144 Nicholson BP, Paul DM, Hande KR et al (2000) Paclitaxel, 5-fluorouracil, and leucovorin (TFL) in the treatment of metastatic breast cancer. Clin Breast Cancer 1(136–143):144
8.
9.
go back to reference Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204CrossRefPubMed Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204CrossRefPubMed
10.
go back to reference Gomez DE, Armando RG, Farina HG et al (2012) Telomere structure and telomerase in health and disease (review). Int J Oncol 41:1561–1569PubMedPubMedCentral Gomez DE, Armando RG, Farina HG et al (2012) Telomere structure and telomerase in health and disease (review). Int J Oncol 41:1561–1569PubMedPubMedCentral
11.
go back to reference de Jesus BB, Blasco MA (2012) Potential of telomerase activation in extending health span and longevity. Curr Opin Cell Biol 24:739–743CrossRefPubMedCentral de Jesus BB, Blasco MA (2012) Potential of telomerase activation in extending health span and longevity. Curr Opin Cell Biol 24:739–743CrossRefPubMedCentral
12.
go back to reference Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–637CrossRefPubMed Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–637CrossRefPubMed
13.
go back to reference Skordalakes E (2009) Telomerase structure paves the way for new cancer therapies. Future Oncol 5:163–167CrossRefPubMed Skordalakes E (2009) Telomerase structure paves the way for new cancer therapies. Future Oncol 5:163–167CrossRefPubMed
14.
go back to reference Zvereva MI, Shcherbakova DM, Dontsova OA (2010) Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc) 75:1563–1583CrossRef Zvereva MI, Shcherbakova DM, Dontsova OA (2010) Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc) 75:1563–1583CrossRef
15.
go back to reference Mason M, Schuller A, Skordalakes E (2011) Telomerase structure function. Curr Opin Struct Biol 21:92–100CrossRefPubMed Mason M, Schuller A, Skordalakes E (2011) Telomerase structure function. Curr Opin Struct Biol 21:92–100CrossRefPubMed
16.
go back to reference Podlevsky JD, Chen JJ (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730:3–11CrossRefPubMed Podlevsky JD, Chen JJ (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730:3–11CrossRefPubMed
17.
go back to reference Hukezalie KR, Wong JM (2013) Structure-function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J 280:3194–3204CrossRefPubMed Hukezalie KR, Wong JM (2013) Structure-function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J 280:3194–3204CrossRefPubMed
18.
go back to reference Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, Rhodes D (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20:454–460CrossRefPubMedPubMedCentral Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, Rhodes D (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20:454–460CrossRefPubMedPubMedCentral
21.
go back to reference Agrawal A, Dang S, Gabrani R (2012) Recent patents on anti-telomerase cancer therapy. Recent Pat Anticancer Drug Discov 7:102–117CrossRefPubMed Agrawal A, Dang S, Gabrani R (2012) Recent patents on anti-telomerase cancer therapy. Recent Pat Anticancer Drug Discov 7:102–117CrossRefPubMed
22.
go back to reference Buseman CM, Wright WE, Shay JW (2012) Is telomerase a viable target in cancer? Mutat Res 730:90–97CrossRefPubMed Buseman CM, Wright WE, Shay JW (2012) Is telomerase a viable target in cancer? Mutat Res 730:90–97CrossRefPubMed
23.
go back to reference Ding Z, Wu CJ, Jaskelioff M et al (2012) Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148:896–907CrossRefPubMedPubMedCentral Ding Z, Wu CJ, Jaskelioff M et al (2012) Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148:896–907CrossRefPubMedPubMedCentral
24.
go back to reference Dosset M, Godet Y, Vauchy C et al (2012) Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res 18:6284–6295CrossRefPubMed Dosset M, Godet Y, Vauchy C et al (2012) Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res 18:6284–6295CrossRefPubMed
25.
go back to reference Chen G, Da L, Wang H et al (2011) HIV-Tat-mediated delivery of an LPTS functional fragment inhibits telomerase activity and tumorigenicity of hepatoma cells. Gastroenterology 140:332–343CrossRefPubMed Chen G, Da L, Wang H et al (2011) HIV-Tat-mediated delivery of an LPTS functional fragment inhibits telomerase activity and tumorigenicity of hepatoma cells. Gastroenterology 140:332–343CrossRefPubMed
26.
go back to reference Dikmen ZG, Gellert GC, Jackson S et al (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65:7866–7873PubMed Dikmen ZG, Gellert GC, Jackson S et al (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65:7866–7873PubMed
27.
go back to reference Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW (2006) Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat 96:73–81CrossRefPubMed Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW (2006) Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat 96:73–81CrossRefPubMed
28.
go back to reference Hochreiter AE, Xiao H, Goldblatt EM et al (2006) Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12:3184–3192CrossRefPubMed Hochreiter AE, Xiao H, Goldblatt EM et al (2006) Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12:3184–3192CrossRefPubMed
29.
go back to reference Gryaznov SM, Jackson S, Dikmen G et al (2007) Oligonucleotide conjugate GRN163L targeting human telomerase as potential anticancer and antimetastatic agent. Nucleosides Nucleotides Nucleic Acids 26:1577–1579CrossRefPubMed Gryaznov SM, Jackson S, Dikmen G et al (2007) Oligonucleotide conjugate GRN163L targeting human telomerase as potential anticancer and antimetastatic agent. Nucleosides Nucleotides Nucleic Acids 26:1577–1579CrossRefPubMed
30.
go back to reference Gomez-Millan J, Goldblatt EM, Gryaznov SM, Mendonca MS, Herbert BS (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67:897–905CrossRefPubMed Gomez-Millan J, Goldblatt EM, Gryaznov SM, Mendonca MS, Herbert BS (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67:897–905CrossRefPubMed
31.
32.
go back to reference Goldblatt EM, Gentry ER, Fox MJ, Gryaznov SM, Shen C, Herbert BS (2009) The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel. Mol Cancer Ther 8:2027–2035CrossRefPubMed Goldblatt EM, Gentry ER, Fox MJ, Gryaznov SM, Shen C, Herbert BS (2009) The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel. Mol Cancer Ther 8:2027–2035CrossRefPubMed
33.
go back to reference Roth A, Harley CB, Baerlocher GM (2010) Imetelstat (GRN163L)—telomerase-based cancer therapy. Recent Results Cancer Res 184:221–234CrossRefPubMed Roth A, Harley CB, Baerlocher GM (2010) Imetelstat (GRN163L)—telomerase-based cancer therapy. Recent Results Cancer Res 184:221–234CrossRefPubMed
34.
go back to reference Cerone MA, Londono-Vallejo JA, Autexier C (2006) Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells. Mol Cancer Ther 5:1669–1675CrossRefPubMed Cerone MA, Londono-Vallejo JA, Autexier C (2006) Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells. Mol Cancer Ther 5:1669–1675CrossRefPubMed
35.
go back to reference Tamakawa RA, Fleisig HB, Wong JM (2010) Telomerase inhibition potentiates the effects of genotoxic agents in breast and colorectal cancer cells in a cell cycle-specific manner. Cancer Res 70:8684–8694CrossRefPubMed Tamakawa RA, Fleisig HB, Wong JM (2010) Telomerase inhibition potentiates the effects of genotoxic agents in breast and colorectal cancer cells in a cell cycle-specific manner. Cancer Res 70:8684–8694CrossRefPubMed
36.
go back to reference Ward RJ, Autexier C (2005) Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 68:779–786PubMed Ward RJ, Autexier C (2005) Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 68:779–786PubMed
37.
go back to reference Dong X, Liu A, Zer C et al (2009) siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells. BMC Cancer 9:133CrossRefPubMedPubMedCentral Dong X, Liu A, Zer C et al (2009) siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells. BMC Cancer 9:133CrossRefPubMedPubMedCentral
38.
go back to reference Bashash D, Ghaffari SH, Zaker F et al (2013) BIBR 1532 increases arsenic trioxide-mediated apoptosis in acute promyelocytic leukemia cells: therapeutic potential for APL. Anticancer Agents Med Chem 13:1115–1125CrossRefPubMed Bashash D, Ghaffari SH, Zaker F et al (2013) BIBR 1532 increases arsenic trioxide-mediated apoptosis in acute promyelocytic leukemia cells: therapeutic potential for APL. Anticancer Agents Med Chem 13:1115–1125CrossRefPubMed
39.
40.
go back to reference Bashash D, Ghaffari SH, Mirzaee R, Alimoghaddam K, Ghavamzadeh A (2013) Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells. Leuk Lymphoma 54:561–568CrossRefPubMed Bashash D, Ghaffari SH, Mirzaee R, Alimoghaddam K, Ghavamzadeh A (2013) Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells. Leuk Lymphoma 54:561–568CrossRefPubMed
41.
go back to reference El-Daly H, Kull M, Zimmermann S, Pantic M, Waller CF, Martens UM (2005) Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 105:1742–1749CrossRefPubMed El-Daly H, Kull M, Zimmermann S, Pantic M, Waller CF, Martens UM (2005) Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 105:1742–1749CrossRefPubMed
42.
go back to reference Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRef Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRef
43.
go back to reference Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681CrossRefPubMed Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681CrossRefPubMed
44.
45.
go back to reference Shi YK, Li ZH, Han XQ et al (2010) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemother Pharmacol 66:1131–1140CrossRefPubMed Shi YK, Li ZH, Han XQ et al (2010) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemother Pharmacol 66:1131–1140CrossRefPubMed
47.
go back to reference Niculescu AR, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643CrossRefPubMedPubMedCentral Niculescu AR, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643CrossRefPubMedPubMedCentral
48.
go back to reference Zasadil LM, Andersen KA, Yeum D et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 6:229r–243rCrossRef Zasadil LM, Andersen KA, Yeum D et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 6:229r–243rCrossRef
49.
go back to reference Dikmen ZG, Wright WE, Shay JW, Gryaznov SM (2008) Telomerase targeted oligonucleotidethio-phosphoramidates in T24-luc bladder cancer cells. J Cell Biochem 104:444–452CrossRefPubMed Dikmen ZG, Wright WE, Shay JW, Gryaznov SM (2008) Telomerase targeted oligonucleotidethio-phosphoramidates in T24-luc bladder cancer cells. J Cell Biochem 104:444–452CrossRefPubMed
50.
go back to reference Das GC, Holiday D, Gallardo R, Haas C (2001) Taxol-induced cell cycle arrest and apoptosis: dose-response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition. Cancer Lett 165:147–153CrossRefPubMed Das GC, Holiday D, Gallardo R, Haas C (2001) Taxol-induced cell cycle arrest and apoptosis: dose-response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition. Cancer Lett 165:147–153CrossRefPubMed
Metadata
Title
A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines
Authors
Yi Shi
Lin Sun
Ge Chen
Dongyan Zheng
Li Li
Wanguo Wei
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 4/2015
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-015-0364-y

Other articles of this Issue 4/2015

Targeted Oncology 4/2015 Go to the issue

Acknowledgement to Referees

Acknowledgment to Referees

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine