Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

A cleanroom sleeping environment’s impact on markers of oxidative stress, immune dysregulation, and behavior in children with autism spectrum disorders

Authors: Scott Faber, Gregory M Zinn, Andrew Boggess, Timothy Fahrenholz, John C Kern II, HM Skip Kingston

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

An emerging paradigm suggests children with autism display a unique pattern of environmental, genetic, and epigenetic triggers that make them susceptible to developing dysfunctional heavy metal and chemical detoxification systems. These abnormalities could be caused by alterations in the methylation, sulfation, and metalloprotein pathways. This study sought to evaluate the physiological and behavioral effects of children with autism sleeping in an International Organization for Standardization Class 5 cleanroom.

Methods

Ten children with autism, ages 3–12, slept in a cleanroom for two weeks to evaluate changes in toxin levels, oxidative stress, immune dysregulation, and behavior. Before and after the children slept in the cleanroom, samples of blood and hair and rating scale scores were obtained to assess these changes.

Results

Five children significantly lowered their concentration of oxidized glutathione, a biomarker of oxidative stress. The younger cohort, age 5 and under, showed significantly greater mean decreases in two markers of immune dysregulation, CD3% and CD4%, than the older cohort. Changes in serum magnesium, influencing neuronal regulation, correlated negatively while changes in serum iron, affecting oxygenation of tissues, correlated positively with age. Changes in serum benzene and PCB 28 concentrations showed significant negative correlations with age. The younger children demonstrated significant improvements on behavioral rating scales compared to the older children. In a younger pair of identical twins, one twin showed significantly greater improvements in 4 out of 5 markers of oxidative stress, which corresponded with better overall behavioral rating scale scores than the other twin.

Conclusions

Younger children who slept in the cleanroom altered elemental levels, decreased immune dysregulation, and improved behavioral rating scales, suggesting that their detoxification metabolism was briefly enhanced. The older children displayed a worsening in behavioral rating scale performance, which may have been caused by the mobilization of toxins from their tissues. The interpretation of this exploratory study is limited by lack of a control group and small sample size. The changes in physiology and behavior noted suggest that performance of larger, prospective controlled studies of exposure to nighttime or 24 hour cleanroom conditions for longer time periods may be useful for understanding detoxification in children with autism.

Trial registration

Clinical Trial Registration Number NCT02195401 (Obtained July 18, 2014).
Literature
2.
go back to reference Wing L, Potter D. The epidemiology of autistic spectrum disorders: is the prevalence rising? Ment Retard Dev Disabil Res Rev. 2002;8(3):151–61.PubMed Wing L, Potter D. The epidemiology of autistic spectrum disorders: is the prevalence rising? Ment Retard Dev Disabil Res Rev. 2002;8(3):151–61.PubMed
3.
go back to reference Fombonne E. Epidemiologic trends in rates of autism. Mol Psychiatry. 2002;7 Suppl 2:S4–6.PubMed Fombonne E. Epidemiologic trends in rates of autism. Mol Psychiatry. 2002;7 Suppl 2:S4–6.PubMed
4.
go back to reference Charman T. The prevalence of autism spectrum disorders. Eur Child Adolesc Psychiatry. 2002;11(6):249–56.PubMed Charman T. The prevalence of autism spectrum disorders. Eur Child Adolesc Psychiatry. 2002;11(6):249–56.PubMed
5.
go back to reference Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord. 2003;33(4):365–82.PubMed Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord. 2003;33(4):365–82.PubMed
6.
go back to reference Fombonne E. The prevalence of autism. J Am Med Assoc. 2003;289(1):87–9. Fombonne E. The prevalence of autism. J Am Med Assoc. 2003;289(1):87–9.
7.
go back to reference Williams JG, Higgins JPT, Brayne CEG. Systematic review of prevalence studies of autism spectrum disorders. Arch Dis Child. 2006;91(1):8–15.PubMed Williams JG, Higgins JPT, Brayne CEG. Systematic review of prevalence studies of autism spectrum disorders. Arch Dis Child. 2006;91(1):8–15.PubMed
8.
go back to reference Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE, et al. Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry. 2009;194:500–9.PubMed Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE, et al. Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry. 2009;194:500–9.PubMed
9.
go back to reference Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, et al. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 2010;125(4):e727–35.PubMedPubMedCentral Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, et al. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 2010;125(4):e727–35.PubMedPubMedCentral
10.
go back to reference Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Function impact of global rare copy number varients. Nature. 2010;466(7304):368–72.PubMedPubMedCentral Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Function impact of global rare copy number varients. Nature. 2010;466(7304):368–72.PubMedPubMedCentral
11.
go back to reference Landrigan PJ, Lambertini L, Birnbaum LS. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect. 2012;120(7):a258–60.PubMedPubMedCentral Landrigan PJ, Lambertini L, Birnbaum LS. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect. 2012;120(7):a258–60.PubMedPubMedCentral
12.
go back to reference Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, Hazel P, et al. The Human Early-Life Exposome (HELIX): project rationale and design. Environ Health Perspect. 2014;122(6):535–44.PubMedPubMedCentral Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, Hazel P, et al. The Human Early-Life Exposome (HELIX): project rationale and design. Environ Health Perspect. 2014;122(6):535–44.PubMedPubMedCentral
13.
go back to reference Lathe R. Autism, brain, and environment. London: Jessica Kingsley Publishers; 2006. Lathe R. Autism, brain, and environment. London: Jessica Kingsley Publishers; 2006.
14.
go back to reference Palmer RF, Blanchard S, Stein Z, Mandell D, Miller C. Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place. 2006;12(2):203–9.PubMed Palmer RF, Blanchard S, Stein Z, Mandell D, Miller C. Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place. 2006;12(2):203–9.PubMed
15.
go back to reference Palmer RF, Blanchard S, Wood R. Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place. 2009;15(1):18–24.PubMed Palmer RF, Blanchard S, Wood R. Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place. 2009;15(1):18–24.PubMed
16.
go back to reference Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect. 2007;115(10):1482–9.PubMedPubMedCentral Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect. 2007;115(10):1482–9.PubMedPubMedCentral
17.
go back to reference Bertrand J, Mars A, Boyle C, Bove F. Prevalence of autism in a United States population: the brick township, New Jersey, investigation. Pediatrics. 2001;108(5):1155–61.PubMed Bertrand J, Mars A, Boyle C, Bove F. Prevalence of autism in a United States population: the brick township, New Jersey, investigation. Pediatrics. 2001;108(5):1155–61.PubMed
18.
go back to reference Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013;70(1):71–7.PubMedPubMedCentral Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013;70(1):71–7.PubMedPubMedCentral
19.
go back to reference Yee S, Choi BH. Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology. 1996;17(1):17–26.PubMed Yee S, Choi BH. Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology. 1996;17(1):17–26.PubMed
20.
go back to reference Flora SJ. Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol. 1999;26(11):865–9.PubMed Flora SJ. Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol. 1999;26(11):865–9.PubMed
21.
go back to reference Flora SJS, Pande M, Kannan GM, Mehta A. Lead induced oxidative stress and its recovery following co-administration of melatonin or N-acetylcysteine during chelation with succimer in male rats. Cell Mol Biol. 2004;50:OL543–51.PubMed Flora SJS, Pande M, Kannan GM, Mehta A. Lead induced oxidative stress and its recovery following co-administration of melatonin or N-acetylcysteine during chelation with succimer in male rats. Cell Mol Biol. 2004;50:OL543–51.PubMed
22.
go back to reference Hiura TS, Kaszubowski MP, Li N, Nel AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol. 1999;163(10):5582–91.PubMed Hiura TS, Kaszubowski MP, Li N, Nel AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol. 1999;163(10):5582–91.PubMed
23.
go back to reference Bhadauria S, Flora SJS. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats. Cell Biol Toxicol. 2007;23(2):91–104.PubMed Bhadauria S, Flora SJS. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats. Cell Biol Toxicol. 2007;23(2):91–104.PubMed
24.
go back to reference Sterzl I, Prochazkova J, Hrda P, Bartova J, Matucha P, Stejskal VDM. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. Neuroendocrinol Lett. 1999;20:221–8.PubMed Sterzl I, Prochazkova J, Hrda P, Bartova J, Matucha P, Stejskal VDM. Mercury and nickel allergy: risk factors in fatigue and autoimmunity. Neuroendocrinol Lett. 1999;20:221–8.PubMed
25.
go back to reference Kempuraj D, Asadi S, Zhang B, Manola A, Hoga J, Peterso E, et al. Mercury induces inflammatory mediator release from human mast cells. Journal of Neuroinflammation 2010, 7(20). Kempuraj D, Asadi S, Zhang B, Manola A, Hoga J, Peterso E, et al. Mercury induces inflammatory mediator release from human mast cells. Journal of Neuroinflammation 2010, 7(20).
26.
go back to reference Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8.PubMed Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8.PubMed
27.
go back to reference Havarinasab S, Hultman P. Organic mercury compounds and autoimmunity. Autoimmun Rev. 2005;4(5):270–5.PubMed Havarinasab S, Hultman P. Organic mercury compounds and autoimmunity. Autoimmun Rev. 2005;4(5):270–5.PubMed
28.
go back to reference Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L, et al. Long-term Air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood–brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310.PubMed Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L, et al. Long-term Air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood–brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310.PubMed
29.
go back to reference Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17:290–314.PubMed Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17:290–314.PubMed
30.
go back to reference Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry. 2012;17:389–401.PubMed Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry. 2012;17:389–401.PubMed
31.
go back to reference Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, et al. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009;2009(532640):1–7. Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, et al. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009;2009(532640):1–7.
32.
go back to reference Stringari J, Nunes AKC, Franco JL, Bohrer D, Garcia SC, Dafre AL, et al. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol. 2008;227(1):147–54.PubMed Stringari J, Nunes AKC, Franco JL, Bohrer D, Garcia SC, Dafre AL, et al. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol. 2008;227(1):147–54.PubMed
33.
go back to reference Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res. 2009;34(2):386–93.PubMed Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res. 2009;34(2):386–93.PubMed
34.
go back to reference Vergani L, Cristina L, Paola R, Luisa AM, Shyti G, Edvige V, et al. Metals, metallothioneins and oxidative stress in blood of autistic children. Res Autism Spectr Disord. 2011;5(1):286–93. Vergani L, Cristina L, Paola R, Luisa AM, Shyti G, Edvige V, et al. Metals, metallothioneins and oxidative stress in blood of autistic children. Res Autism Spectr Disord. 2011;5(1):286–93.
35.
go back to reference Walsh WJ, Usman A, Tarpey J, Kelly T. Metallothionein and autism [monograph]. 2nd ed. Naperville, IL: Pfeiffer Treatment Center; 2002. Walsh WJ, Usman A, Tarpey J, Kelly T. Metallothionein and autism [monograph]. 2nd ed. Naperville, IL: Pfeiffer Treatment Center; 2002.
36.
go back to reference Jacob C, Maret W, Vallee BL. Ebselen, a selenium-containing redox drug, releases zinc from metallothionein. Biochem Biophys Res Commun. 1998;248(3):569–73.PubMed Jacob C, Maret W, Vallee BL. Ebselen, a selenium-containing redox drug, releases zinc from metallothionein. Biochem Biophys Res Commun. 1998;248(3):569–73.PubMed
37.
go back to reference Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13(3):171–81.PubMed Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13(3):171–81.PubMed
38.
go back to reference James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611–7.PubMed James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611–7.PubMed
39.
go back to reference James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):947–56.PubMedPubMedCentral James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):947–56.PubMedPubMedCentral
40.
go back to reference Aschner M. The functional significance of brain metallothioneins. FASEB J. 1996;10(10):1129–36.PubMed Aschner M. The functional significance of brain metallothioneins. FASEB J. 1996;10(10):1129–36.PubMed
41.
go back to reference Faber S, Zinn GM, Kern II JC, Kingston HMS. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009;14(3):171–80.PubMed Faber S, Zinn GM, Kern II JC, Kingston HMS. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009;14(3):171–80.PubMed
42.
go back to reference Vojdani A, Mumper E, Granpeesheh D, Mielke L, Traver D, Bock K, et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol. 2008;205(1–2):148–54.PubMed Vojdani A, Mumper E, Granpeesheh D, Mielke L, Traver D, Bock K, et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol. 2008;205(1–2):148–54.PubMed
43.
go back to reference Vojdani A, Pangborn JB, Vojdani E, Cooper EL. Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. Int J Immunopathol Pharmacol. 2003;16(3):189–99.PubMed Vojdani A, Pangborn JB, Vojdani E, Cooper EL. Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. Int J Immunopathol Pharmacol. 2003;16(3):189–99.PubMed
44.
go back to reference Singh VK. Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism. Ann Clin Psychiatry. 2009;21(3):148–61.PubMed Singh VK. Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism. Ann Clin Psychiatry. 2009;21(3):148–61.PubMed
45.
go back to reference Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.PubMed Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.PubMed
46.
go back to reference Kana RK, Keller TA, Minshew NJ, Just MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry. 2007;62(3):198–206.PubMed Kana RK, Keller TA, Minshew NJ, Just MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry. 2007;62(3):198–206.PubMed
47.
go back to reference Zimmerman AW. The immune system. In: Bauman ML, Kemper TL, editors. The neurobiology of autism. 2nd ed. Baltimore: The Johns Hopkins University Press; 2005. p. 371–86. Zimmerman AW. The immune system. In: Bauman ML, Kemper TL, editors. The neurobiology of autism. 2nd ed. Baltimore: The Johns Hopkins University Press; 2005. p. 371–86.
48.
go back to reference Ashwood P, Wills S, Van De Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol. 2006;80(1):1–15.PubMed Ashwood P, Wills S, Van De Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol. 2006;80(1):1–15.PubMed
49.
go back to reference Gupta S, Aggarwal S, Heads C. Brief report: dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics. J Autism Dev Disord. 1996;26(4):439–52.PubMed Gupta S, Aggarwal S, Heads C. Brief report: dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics. J Autism Dev Disord. 1996;26(4):439–52.PubMed
50.
go back to reference Denney DR, Frei BW, Gaffney GR. Lymphocyte subsets and interleukin-2 receptors in autistic children. J Autism Dev Disord. 1996;26(1):87–97.PubMed Denney DR, Frei BW, Gaffney GR. Lymphocyte subsets and interleukin-2 receptors in autistic children. J Autism Dev Disord. 1996;26(1):87–97.PubMed
51.
go back to reference Faber S, Kobelak C, Caminos C. Immune dysregulation in a cohort of children with autism spectrum disorders. In: Pediatric Academic Societies' Annual Meeting: May 5–8 2007; Toronto, Canada. 2007. Faber S, Kobelak C, Caminos C. Immune dysregulation in a cohort of children with autism spectrum disorders. In: Pediatric Academic Societies' Annual Meeting: May 5–8 2007; Toronto, Canada. 2007.
52.
go back to reference Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van De Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5.PubMed Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van De Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5.PubMed
53.
go back to reference Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry. 2005;17(6):485–95.PubMed Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry. 2005;17(6):485–95.PubMed
54.
go back to reference Faber S, Zinn GM, Fahrenholz T, Boggess A, Kern JC, Kingston HMS. A comparison study of inorganic and organic compounds in children with autism and controls. In: International Meeting for Autism Research: May 17–19 2012; Toronto, Canada. 2012. Faber S, Zinn GM, Fahrenholz T, Boggess A, Kern JC, Kingston HMS. A comparison study of inorganic and organic compounds in children with autism and controls. In: International Meeting for Autism Research: May 17–19 2012; Toronto, Canada. 2012.
55.
go back to reference Miller CS. Toxicant-induced loss of tolerance-an emerging theory of disease. Environ Health Perspect. 1997;105(S-2):445–53.PubMedPubMedCentral Miller CS. Toxicant-induced loss of tolerance-an emerging theory of disease. Environ Health Perspect. 1997;105(S-2):445–53.PubMedPubMedCentral
56.
go back to reference Platts-Mills TAE, Vaughan JW, Carter MC, Woodfolk JA. The role of intervention in established allergy: avoidance of indoor allergens in the treatment of chronic allergic disease. J Allergy Clin Immunol. 2000;106(5):787–804.PubMed Platts-Mills TAE, Vaughan JW, Carter MC, Woodfolk JA. The role of intervention in established allergy: avoidance of indoor allergens in the treatment of chronic allergic disease. J Allergy Clin Immunol. 2000;106(5):787–804.PubMed
57.
go back to reference Sanda T, Yasue T, Oohash M, Yasue A. Effectiveness of house dust-mite allergens avoidance through clean room therapy in patients with atopic dermatitis. J Allergy Clin Immunol. 1992;89(3):653–7.PubMed Sanda T, Yasue T, Oohash M, Yasue A. Effectiveness of house dust-mite allergens avoidance through clean room therapy in patients with atopic dermatitis. J Allergy Clin Immunol. 1992;89(3):653–7.PubMed
58.
go back to reference Anyanwu EC, Campbell AW, Jones J, Ehiri J. The neurological significance of abnormal natural killer cell activity in chronic toxigenic mold exposures. Sci World J. 2003;3:1128–37. Anyanwu EC, Campbell AW, Jones J, Ehiri J. The neurological significance of abnormal natural killer cell activity in chronic toxigenic mold exposures. Sci World J. 2003;3:1128–37.
59.
go back to reference Theoharides TC, Zhang B. Neuro-inflammation, blood–brain barrier, seizures and autism. Journal of Neuroinflammation 2011;8(168). Theoharides TC, Zhang B. Neuro-inflammation, blood–brain barrier, seizures and autism. Journal of Neuroinflammation 2011;8(168).
60.
go back to reference Slimak KM. Autistic symptoms caused by chemicals in food, indoor air and mold; and using avoidance strategies to eliminate symptoms in children suffering from severe autism. In: Seminar for environmental avoidance strategies in severe autism: March 13–14 2002; Jackson, Michigan. 2002. Slimak KM. Autistic symptoms caused by chemicals in food, indoor air and mold; and using avoidance strategies to eliminate symptoms in children suffering from severe autism. In: Seminar for environmental avoidance strategies in severe autism: March 13–14 2002; Jackson, Michigan. 2002.
61.
go back to reference Slimak KM. In 45 autistic children sharp decreases in autistic symptoms follow elimination of problem foods, volatile organic compounds, plastics, resins, and molds. In: Second International Conference on Advances in Treatment of Autistic Spectrum Disorders, Opening Doors--New Biological Treatment Alternatives, Sociedad Venezolana para Niños y Adultos Autistas (SOVENIA): February 15–16 2002; Caracus, Venezuela. 2002. Slimak KM. In 45 autistic children sharp decreases in autistic symptoms follow elimination of problem foods, volatile organic compounds, plastics, resins, and molds. In: Second International Conference on Advances in Treatment of Autistic Spectrum Disorders, Opening Doors--New Biological Treatment Alternatives, Sociedad Venezolana para Niños y Adultos Autistas (SOVENIA): February 15–16 2002; Caracus, Venezuela. 2002.
62.
go back to reference Slimak KM. Effect of removal of low levels of volatile organic compounds on severe autistic behaviors in children. In: Annual Conference of the Association for Science in the Public Interest: May 31-June 2 2001; Virginia Commonwealth University, Richmond, Virginia. 2001. Slimak KM. Effect of removal of low levels of volatile organic compounds on severe autistic behaviors in children. In: Annual Conference of the Association for Science in the Public Interest: May 31-June 2 2001; Virginia Commonwealth University, Richmond, Virginia. 2001.
63.
go back to reference Slimak KM. Reduction of autistic traits following dietary intervention and elimination of exposure to environmental substances. In: Proceedings of 2003 International Symposium on Indoor Air Quality and Health Hazards. vol. 2. Tokyo, Japan. 2003. p. 206–16. Slimak KM. Reduction of autistic traits following dietary intervention and elimination of exposure to environmental substances. In: Proceedings of 2003 International Symposium on Indoor Air Quality and Health Hazards. vol. 2. Tokyo, Japan. 2003. p. 206–16.
64.
go back to reference Rogers SJ. Brief report: early intervention in autism. J Autism Dev Disord. 1996;26(2):243–6.PubMed Rogers SJ. Brief report: early intervention in autism. J Autism Dev Disord. 1996;26(2):243–6.PubMed
65.
go back to reference Butter EM, Wynn J, Mulick JA. Early intervention critical to autism treatment. Pediatr Ann. 2003;32(10):677–84.PubMed Butter EM, Wynn J, Mulick JA. Early intervention critical to autism treatment. Pediatr Ann. 2003;32(10):677–84.PubMed
66.
go back to reference Dumont-Mathieu T, Fein D. Screening for Autism in Young Children: The Modified Checklist for Autism in Toddlers (M-CHAT) and Other Measures. Ment Retard Dev Disabil Res Rev. 2005;11(3):253–62.PubMed Dumont-Mathieu T, Fein D. Screening for Autism in Young Children: The Modified Checklist for Autism in Toddlers (M-CHAT) and Other Measures. Ment Retard Dev Disabil Res Rev. 2005;11(3):253–62.PubMed
67.
go back to reference Lord C, Rutter M, DiLavore PC, Risi S. Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services; 1999. Lord C, Rutter M, DiLavore PC, Risi S. Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services; 1999.
68.
go back to reference International Organization of Standardization. Cleanrooms and associated controlled environments--Part 1: Classification of air cleanliness. Switzerland: International Organization of Standardization; 1999. International Organization of Standardization. Cleanrooms and associated controlled environments--Part 1: Classification of air cleanliness. Switzerland: International Organization of Standardization; 1999.
69.
go back to reference U.S. EPA Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices in test methods for evaluating solid waste, physical/chemical methods SW-846. Washington, D.C: U.S. Government Printing Office; 1996. U.S. EPA Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices in test methods for evaluating solid waste, physical/chemical methods SW-846. Washington, D.C: U.S. Government Printing Office; 1996.
70.
go back to reference U.S. EPA Method 6020B. Inductively coupled plasma-mass spectrometry in test methods for evaluating solid waste, physical/chemical methods SW-846. Washington, D.C: U.S. Government Printing Office; 2013. U.S. EPA Method 6020B. Inductively coupled plasma-mass spectrometry in test methods for evaluating solid waste, physical/chemical methods SW-846. Washington, D.C: U.S. Government Printing Office; 2013.
71.
go back to reference U.S. EPA Method 6800. Elemental and speciated isotope dilution mass spectrometry in test methods for evaluating solid waste, physical/chemical methods SW-846. In: vol. Update IVA. Washington, D.C: U.S. Government Printing Office; 2007. p. 1–47. U.S. EPA Method 6800. Elemental and speciated isotope dilution mass spectrometry in test methods for evaluating solid waste, physical/chemical methods SW-846. In: vol. Update IVA. Washington, D.C: U.S. Government Printing Office; 2007. p. 1–47.
72.
go back to reference U.S. EPA Method 1624. Volatile organic compounds by isotope dilution GCMS. Washington, D.C: U.S. Government Printing Office; 1989. U.S. EPA Method 1624. Volatile organic compounds by isotope dilution GCMS. Washington, D.C: U.S. Government Printing Office; 1989.
73.
go back to reference U.S. EPA Method 1625. Semivolatile organic compounds by isotope dilution GCMS. Washington, D.C: U.S. Government Printing Office; 1989. U.S. EPA Method 1625. Semivolatile organic compounds by isotope dilution GCMS. Washington, D.C: U.S. Government Printing Office; 1989.
74.
go back to reference Rutter M, Bailey A, Lord C. Social communication questionnaire. Los Angeles, CA: Western Psychological Services; 2003. Rutter M, Bailey A, Lord C. Social communication questionnaire. Los Angeles, CA: Western Psychological Services; 2003.
75.
go back to reference Cohen IL, Sudhalter V. PDD behavior inventory. Lutz, FL: Psychological Assessment Resources; 2005. Cohen IL, Sudhalter V. PDD behavior inventory. Lutz, FL: Psychological Assessment Resources; 2005.
76.
go back to reference Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of the treatment effects. Am J Ment Defic. 1985;89(5):485–91.PubMed Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of the treatment effects. Am J Ment Defic. 1985;89(5):485–91.PubMed
77.
go back to reference Gilliam JE. Gilliam autism rating scale-second edition. Austin, TX: ProEd; 2006. Gilliam JE. Gilliam autism rating scale-second edition. Austin, TX: ProEd; 2006.
78.
go back to reference Rimland B, Edelson M. Autism treatment evaluation checklist. San Diego, CA: Autism Research Institute; 1999. Rimland B, Edelson M. Autism treatment evaluation checklist. San Diego, CA: Autism Research Institute; 1999.
79.
go back to reference Schopler E, Reichler RJ, Rochen Renner B. The Childhood Autism Rating Scale (CARS): for diagnostic screening and classification of autism. Irvington, New York: Irvington Press; 1986. Schopler E, Reichler RJ, Rochen Renner B. The Childhood Autism Rating Scale (CARS): for diagnostic screening and classification of autism. Irvington, New York: Irvington Press; 1986.
80.
go back to reference Berument SK, Rutter M, Lord C, Pickles A, Bailey A. Autism screening questionnaire: diagnostic validity. Br J Psychiatry. 1999;175(5):444–51.PubMed Berument SK, Rutter M, Lord C, Pickles A, Bailey A. Autism screening questionnaire: diagnostic validity. Br J Psychiatry. 1999;175(5):444–51.PubMed
81.
go back to reference Cohen IL, Schmidt-Lackner S, Romanczyk R, Sudhalter V. The PDD behavior inventory: a rating scale for assessing response to intervention in children with pervasive developmental disorder. J Autism Dev Disord. 2003;33(1):31–45.PubMed Cohen IL, Schmidt-Lackner S, Romanczyk R, Sudhalter V. The PDD behavior inventory: a rating scale for assessing response to intervention in children with pervasive developmental disorder. J Autism Dev Disord. 2003;33(1):31–45.PubMed
82.
go back to reference Zinn GM. The application of mass spectrometric measurement techniques for the evaluation and assessment of autism spectrum disorders. Pittsburgh, PA: Duquesne University; 2014. Zinn GM. The application of mass spectrometric measurement techniques for the evaluation and assessment of autism spectrum disorders. Pittsburgh, PA: Duquesne University; 2014.
84.
go back to reference Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A - Medical results. BMC Clinical Pharmacology 2009, 9(16). Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A - Medical results. BMC Clinical Pharmacology 2009, 9(16).
85.
go back to reference Schafer FQ, Buettner GR. Redox envionment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.PubMed Schafer FQ, Buettner GR. Redox envionment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.PubMed
86.
go back to reference Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, et al. Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci. 2009;280(1–2):101–8.PubMed Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, et al. Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci. 2009;280(1–2):101–8.PubMed
87.
go back to reference Wu Y, Zheng J, Linden J, Holoshitz J. Genoprotective pathways part I. Extracellular signaling through Gs protein-coupled adenosine receptors prevents oxidative DNA damage. Mutat Res-Fund Mol M. 2004;546(1–2):93–102. Wu Y, Zheng J, Linden J, Holoshitz J. Genoprotective pathways part I. Extracellular signaling through Gs protein-coupled adenosine receptors prevents oxidative DNA damage. Mutat Res-Fund Mol M. 2004;546(1–2):93–102.
88.
go back to reference Almeida CG, de Mendonca A, Cunha RA, Ribeiro JA. Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices. Neurosci Lett. 2003;339(2):127–30.PubMed Almeida CG, de Mendonca A, Cunha RA, Ribeiro JA. Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices. Neurosci Lett. 2003;339(2):127–30.PubMed
89.
go back to reference Chakrabarti N, Neale C, Payandeh J, Pai EF, Pomes R. An iris-like mechanism of pore dilation in the CorA magnesium transport system. Biophys J. 2010;98(5):784–92.PubMedPubMedCentral Chakrabarti N, Neale C, Payandeh J, Pai EF, Pomes R. An iris-like mechanism of pore dilation in the CorA magnesium transport system. Biophys J. 2010;98(5):784–92.PubMedPubMedCentral
90.
go back to reference Strambi M, Longini M, Hayek J, Berni S, Macucci F, Scalacci E, et al. Magnesium profile in autism. Biol Trace Elem Res. 2006;109(2):97–104.PubMed Strambi M, Longini M, Hayek J, Berni S, Macucci F, Scalacci E, et al. Magnesium profile in autism. Biol Trace Elem Res. 2006;109(2):97–104.PubMed
91.
go back to reference Lubkowska A, Sobieraj W. Concentrations of magnesium, calcium, iron, selenium, zinc, and copper in the hair of autistic children. Trace Elem Electrolytes. 2009;26(2):72–7. Lubkowska A, Sobieraj W. Concentrations of magnesium, calcium, iron, selenium, zinc, and copper in the hair of autistic children. Trace Elem Electrolytes. 2009;26(2):72–7.
92.
go back to reference Mousain-Bosc M, Roche M, Polge A, Pradal-Prat D, Rapin J, Bali JP. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6 II. Pervasive developmental disorder-autism. Magnes Res. 2006;19(1):53–62.PubMed Mousain-Bosc M, Roche M, Polge A, Pradal-Prat D, Rapin J, Bali JP. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6 II. Pervasive developmental disorder-autism. Magnes Res. 2006;19(1):53–62.PubMed
93.
go back to reference Curtis LT, Patel K. Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): a review. J Altern Complement Med. 2008;14(1):79–85.PubMed Curtis LT, Patel K. Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): a review. J Altern Complement Med. 2008;14(1):79–85.PubMed
94.
go back to reference Marrero J, Rebagliati RJ, Leiva E, Londonio A, Smichowski P. Inductively coupled plasma optical emission spectrometric determination of fifteen elements in dietary supplements: are the concentrations declared in the labels accurate? Microchem J. 2013;108:81–6. Marrero J, Rebagliati RJ, Leiva E, Londonio A, Smichowski P. Inductively coupled plasma optical emission spectrometric determination of fifteen elements in dietary supplements: are the concentrations declared in the labels accurate? Microchem J. 2013;108:81–6.
95.
go back to reference Fairweather-Tait SJ, Harvey LJ, Collings R. Risk-benefit analysis of mineral intakes: case studies on copper and iron. Proc Nutr Soc. 2011;70(1):1–9.PubMed Fairweather-Tait SJ, Harvey LJ, Collings R. Risk-benefit analysis of mineral intakes: case studies on copper and iron. Proc Nutr Soc. 2011;70(1):1–9.PubMed
96.
go back to reference Jiang L-J, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A. 1998;95(7):3483–8.PubMedPubMedCentral Jiang L-J, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A. 1998;95(7):3483–8.PubMedPubMedCentral
Metadata
Title
A cleanroom sleeping environment’s impact on markers of oxidative stress, immune dysregulation, and behavior in children with autism spectrum disorders
Authors
Scott Faber
Gregory M Zinn
Andrew Boggess
Timothy Fahrenholz
John C Kern II
HM Skip Kingston
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0564-0

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue